skip to main content


Search for: All records

Award ID contains: 1704417

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Colonies of the arboreal turtle ant create networks of trails that link nests and food sources on the graph formed by branches and vines in the canopy of the tropical forest. Ants put down a volatile pheromone on the edges as they traverse them. At each vertex, the next edge to traverse is chosen using a decision rule based on the current pheromone level. There is a bidirectional flow of ants around the network. In a previous field study, it was observed that the trail networks approximately minimize the number of vertices, thus solving a variant of the popular shortest path problem without any central control and with minimal computational resources. We propose a biologically plausible model, based on a variant of the reinforced random walk on a graph, which explains this observation and suggests surprising algorithms for the shortest path problem and its variants. Through simulations and analysis, we show that when the rate of flow of ants does not change, the dynamics converges to the path with the minimum number of vertices, as observed in the field. The dynamics converges to the shortest path when the rate of flow increases with time, so the colony can solve the shortest path problem merely by increasing the flow rate. We also show that to guarantee convergence to the shortest path, bidirectional flow and a decision rule dividing the flow in proportion to the pheromone level are necessary, but convergence to approximately short paths is possible with other decision rules. 
    more » « less
  2. We show that any memory-constrained, first-order algorithm which minimizes d-dimensional, 1-Lipschitz convex functions over the unit ball to 1/ poly(d) accuracy using at most d^(1.25-delta) bits of memory must make at least d^(1+ 4 delta / 3) first-order queries (for any constant delta in (0,1/4). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal O(d polylog d) query bound for this problem obtained by cutting plane methods that use >d^2 memory. This resolves one of the open problems in the COLT 2019 open problem publication of Woodworth and Srebro. 
    more » « less
  3. We provide new gradient-based methods for efficiently solving a broad class of ill-conditioned optimization problems. We consider the problem of minimizing a function f : R d --> R which is implicitly decomposable as the sum of m unknown non-interacting smooth, strongly convex functions and provide a method which solves this problem with a number of gradient evaluations that scales (up to logarithmic factors) as the product of the square-root of the condition numbers of the components. This complexity bound (which we prove is nearly optimal) can improve almost exponentially on that of accelerated gradient methods, which grow as the square root of the condition number of f. Additionally, we provide efficient methods for solving stochastic, quadratic variants of this multiscale optimization problem. Rather than learn the decomposition of f (which would be prohibitively expensive), our methods apply a clean recursive “Big-Step-Little-Step” interleaving of standard methods. The resulting algorithms use O˜(dm) space, are numerically stable, and open the door to a more fine-grained understanding of the complexity of convex optimization beyond condition number. 
    more » « less
  4. We consider Ising models on the hypercube with a general interaction matrix 𝐽, and give a polynomial time sampling algorithm when all but 𝑂(1) eigenvalues of 𝐽 lie in an interval of length one, a situation which occurs in many models of interest. This was previously known for the Glauber dynamics when \emph{all} eigenvalues fit in an interval of length one; however, a single outlier can force the Glauber dynamics to mix torpidly. Our general result implies the first polynomial time sampling algorithms for low-rank Ising models such as Hopfield networks with a fixed number of patterns and Bayesian clustering models with low-dimensional contexts, and greatly improves the polynomial time sampling regime for the antiferromagnetic/ferromagnetic Ising model with inconsistent field on expander graphs. It also improves on previous approximation algorithm results based on the naive mean-field approximation in variational methods and statistical physics. Our approach is based on a new fusion of ideas from the MCMC and variational inference worlds. As part of our algorithm, we define a new nonconvex variational problem which allows us to sample from an exponential reweighting of a distribution by a negative definite quadratic form, and show how to make this procedure provably efficient using stochastic gradient descent. On top of this, we construct a new simulated tempering chain (on an extended state space arising from the Hubbard-Stratonovich transform) which overcomes the obstacle posed by large positive eigenvalues, and combine it with the SGD-based sampler to solve the full problem. 
    more » « less