skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The manifestation of secondary bias on the galaxy population from IllustrisTNG300
ABSTRACT We use the improved IllustrisTNG300 magnetohydrodynamical cosmological simulation to revisit the effect that secondary halo bias has on the clustering of the central galaxy population. With a side length of 205 h−1 Mpc and significant improvements on the subgrid model with respect to previous Illustris simulations, IllustrisTNG300 allows us to explore the dependencies of galaxy clustering over a large cosmological volume and halo mass range. We show at high statistical significance that the halo assembly bias signal (i.e. the secondary dependence of halo bias on halo formation redshift) manifests itself on the clustering of the galaxy population when this is split by stellar mass, colour, specific star formation rate, and surface density. A significant signal is also found for galaxy size: at fixed halo mass, larger galaxies are more tightly clustered than smaller galaxies. This effect, in contrast to the rest of the dependencies, seems to be uncorrelated with halo formation time, with some small correlation only detected for halo spin. We also explore the transmission of the spin bias signal, i.e. the secondary dependence of halo bias on halo spin. Although galaxy spin retains little information about the total halo spin, the correlation is enough to produce a significant galaxy spin bias signal. We discuss possible ways to probe this effect with observations.  more » « less
Award ID(s):
1818899
PAR ID:
10170223
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1182 to 1196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper represents an effort to provide robust constraints on the galaxy–halo connection and simultaneously test the Planck ΛCDM cosmology using a fully numerical model of small-scale galaxy clustering. We explore two extensions to the standard Halo Occupation Distribution model: assembly bias, whereby halo occupation depends on both halo mass and the larger environment, and velocity bias, whereby galaxy velocities do not perfectly trace the velocity of the dark matter within the halo. Moreover, we incorporate halo mass corrections to account for the impact of baryonic physics on the halo population. We identify an optimal set of clustering measurements to constrain this “decorated” HOD model for both low- and high-luminosity galaxies in SDSS DR7. We find that, for low-luminosity galaxies, a model with both assembly bias and velocity bias provides the best fit to the clustering measurements, with no tension remaining in the fit. In this model, we find evidence for both central and satellite galaxy assembly bias at the 99% and 95% confidence levels, respectively. In addition, we find evidence for satellite galaxy velocity bias at the 99.9% confidence level. For high-luminosity galaxies, we find no evidence for either assembly bias or velocity bias, but our model exhibits significant tension with SDSS measurements. We find that all of these conclusions still stand when we include the effects of baryonic physics on the halo mass function, suggesting that the tension we find for high-luminosity galaxies may be due to a problem with our assumed cosmological model. 
    more » « less
  2. ABSTRACT Cosmological constraints from current and upcoming galaxy cluster surveys are limited by the accuracy of cluster mass calibration. In particular, optically identified galaxy clusters are prone to selection effects that can bias the weak lensing mass calibration. We investigate the selection bias of the stacked cluster lensing signal associated with optically selected clusters, using clusters identified by the redMaPPer algorithm in the Buzzard simulations as a case study. We find that at a given cluster halo mass, the residuals of redMaPPer richness and weak lensing signal are positively correlated. As a result, for a given richness selection, the stacked lensing signal is biased high compared with what we would expect from the underlying halo mass probability distribution. The cluster lensing selection bias can thus lead to overestimated mean cluster mass and biased cosmology results. We show that the lensing selection bias exhibits a strong scale dependence and is approximately 20–60 per cent for ΔΣ at large scales. This selection bias largely originates from spurious member galaxies within ±20–60 $$h^{-1}\, \rm Mpc$$ along the line of sight, highlighting the importance of quantifying projection effects associated with the broad redshift distribution of member galaxies in photometric cluster surveys. While our results qualitatively agree with those in the literature, accurate quantitative modelling of the selection bias is needed to achieve the goals of cluster lensing cosmology and will require synthetic catalogues covering a wide range of galaxy–halo connection models. 
    more » « less
  3. ABSTRACT We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy–galaxy lensing, using two different lens samples: a sample of luminous red galaxies, redMaGiC, and a sample with a redshift-dependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy–galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering autocorrelation and galaxy–galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in ΛCDM and wCDM. However, when magnification bias amplitude is allowed to be free, we find the two-point correlation functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the cross-clustering between lens bins with the prediction from the baseline analysis, which uses only the autocorrelation of the lens bins, indicating that systematics other than magnification may be the cause of the discrepancy. We show that adding the cross-clustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns. 
    more » « less
  4. ABSTRACT We explore how the splashback radius (Rsp) of galaxy clusters, measured using the number density of the subhalo population, changes based on various selection criteria using the IllustrisTNG cosmological galaxy formation simulation. We identify Rsp by extracting the steepest radial gradient in a stacked set of clusters in 0.5 dex wide mass bins, with our clusters having halo masses 1013 ≤ M200,mean/M⊙ ≤ 1015. We apply cuts in subhalo mass, galaxy stellar mass, i-band absolute magnitude, and specific star formation rate. We find that, generally, galaxies of increasing mass and luminosity trace smaller measured splashback radii relative to the intrinsic dark matter radius. We also show that quenched galaxies may be used to reliably reconstruct the dark matter splashback radius. This trend is likely due to changes in the galaxy population. Additionally, we are able to reconcile different observational predictions that Rsp based upon galaxy number counts and dark matter may either align or show significant offset (e.g. those using optically or SZ-selected clusters) through the selection functions that these studies employ. Finally, we demonstrate that changes in Rsp measured through number counts are not due to a simple change in galaxy abundance inside and outside of the cluster. 
    more » « less
  5. ABSTRACT Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($$M_\star \sim 10^{7-9}\, {\rm M}_\odot$$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $$R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$$, with a nearly constant scatter $$\langle \sigma \rangle = 0.084\, [{\rm dex}]$$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo properties we investigate – including spin and concentration – suggesting that baryonic processes and feedback physics are instead critical in setting the scatter in the GHSR. Given the relatively small scatter and the weak dependence of the GHSR on redshift and halo properties for these low-mass central galaxies, we propose using galaxy sizes as an independent method from stellar masses to infer halo masses. 
    more » « less