skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Future of the human climate niche
All species have an environmental niche, and despite technological advances, humans are unlikely to be an exception. Here, we demonstrate that for millennia, human populations have resided in the same narrow part of the climatic envelope available on the globe, characterized by a major mode around ∼11 °C to 15 °C mean annual temperature (MAT). Supporting the fundamental nature of this temperature niche, current production of crops and livestock is largely limited to the same conditions, and the same optimum has been found for agricultural and nonagricultural economic output of countries through analyses of year-to-year variation. We show that in a business-as-usual climate change scenario, the geographical position of this temperature niche is projected to shift more over the coming 50 y than it has moved since 6000 BP. Populations will not simply track the shifting climate, as adaptation in situ may address some of the challenges, and many other factors affect decisions to migrate. Nevertheless, in the absence of migration, one third of the global population is projected to experience a MAT >29 °C currently found in only 0.8% of the Earth’s land surface, mostly concentrated in the Sahara. As the potentially most affected regions are among the poorest in the world, where adaptive capacity is low, enhancing human development in those areas should be a priority alongside climate mitigation.  more » « less
Award ID(s):
1637171
PAR ID:
10170263
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
21
ISSN:
0027-8424
Page Range / eLocation ID:
11350 to 11355
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus ), given that several closely related viruses have been discovered and sarbecovirus–host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations. 
    more » « less
  2. Abstract The success of plant species under climate change will be determined, in part, by their phenological responses to temperature. Despite the growing need to forecast such outcomes across entire species ranges, it remains unclear how phenological sensitivity to temperature might vary across individuals of the same species. In this study, we harnessed community science data to document intraspecific patterns in phenological temperature sensitivity across the multicontinental range of six herbaceous plant species. Using linear models, we correlated georeferenced temperature data with 23 220 plant phenological records from iNaturalist to generate spatially explicit estimates of phenological temperature sensitivity across the shared range of species. We additionally evaluated the geographic association between local historic climate conditions (i.e. mean annual temperature [MAT] and interannual variability in temperature) and the temperature sensitivity of plants. We found that plant temperature sensitivity varied substantially at both the interspecific and intraspecific levels, demonstrating that phenological responses to climate change have the potential to vary both within and among species. Additionally, we provide evidence for a strong geographic association between plant temperature sensitivity and local historic climate conditions. Plants were more sensitive to temperature in hotter climates (i.e. regions with high MAT), but only in regions with high interannual temperature variability. In regions with low interannual temperature variability, plants displayed universally weak sensitivity to temperature, regardless of baseline annual temperature. This evidence suggests that pheno-climatic forecasts may be improved by accounting for intraspecific variation in phenological temperature sensitivity. Broad climatic factors such as MAT and interannual temperature variability likely serve as useful predictors for estimating temperature sensitivity across species’ ranges. 
    more » « less
  3. ABSTRACT Predicting the effects of climate change on plant disease is critical for protecting ecosystems and food production. Here, we show how disease pressure responds to short‐term weather, historical climate and weather anomalies by compiling a global database (4339 plant–disease populations) of disease prevalence in both agricultural and wild plant systems. We hypothesised that weather and climate would play a larger role in disease in wild versus agricultural plant populations, which the results supported. In wild systems, disease prevalence peaked when the temperature was 2.7°C warmer than the historical average for the same time of year. We also found evidence of a negative interactive effect between weather anomalies and climate in wild systems, consistent with the idea that climate maladaptation can be an important driver of disease outbreaks. Temperature and precipitation had relatively little explanatory power in agricultural systems, though we observed a significant positive effect of current temperature. These results indicate that disease pressure in wild plants is sensitive to nonlinear effects of weather, weather anomalies and their interaction with historical climate. In contrast, warmer temperatures drove risks for agricultural plant disease outbreaks within the temperature range examined regardless of historical climate, suggesting vulnerability to ongoing climate change. 
    more » « less
  4. The timing of germination has profound impacts on fitness, population dynamics, and species ranges. Many plants have evolved responses to seasonal environmental cues to time germination with favorable conditions; these responses interact with temporal variation in local climate to drive the seasonal climate niche and may reflect local adaptation. Here, we examined germination responses to temperature cues in Streptanthus tortuosus populations across an elevational gradient. Methods Using common garden experiments, we evaluated differences among populations in response to cold stratification (chilling) and germination temperature and related them to observed germination phenology in the field. We then explored how these responses relate to past climate at each site and the implications of those patterns under future climate change. Results Populations from high elevations had stronger stratification requirements for germination and narrower temperature ranges for germination without stratification. Differences in germination responses corresponded with elevation and variability in seasonal temperature and precipitation across populations. Further, they corresponded with germination phenology in the field; low‐elevation populations germinated in the fall without chilling, whereas high‐elevation populations germinated after winter chilling and snowmelt in spring and summer. Climate‐change forecasts indicate increasing temperatures and decreasing snowpack, which will likely alter germination cues and timing, particularly for high‐elevation populations. Conclusions The seasonal germination niche for S. tortuosus is highly influenced by temperature and varies across the elevational gradient. Climate change will likely affect germination timing, which may cascade to influence trait expression, fitness, and population persistence. 
    more » « less
  5. Abstract All populations are affected by multiple environmental drivers, including climatic drivers such as temperature or precipitation and biotic drivers such as herbivory or mutualisms. The relative response of a population to each driver is critical to prioritizing threat mitigation for conservation and to understanding whether climatic or biotic drivers most strongly affect fitness. However, the importance of different drivers can vary dramatically across species and across populations of the same species. Theory suggests that the response to climatic versus biotic drivers can be affected by both the species' fundamental niche breadth and the latitude of the population at which the response is measured. However, we have few tests of how these two factors affect relative response to drivers separately, let alone tests of how niche breadth and latitude together influence responses. Here, we use a meta‐analysis of published studies on population response to climatic and biotic drivers in terrestrial plants, combined with estimates of climatic niche breadth and position within climatic niche derived from herbarium records, to show that species' niche breadth is the primary determinant of response to climatic versus biotic drivers. Namely, we find that response to climatic drivers changes only minimally with increasing niche breadth, while response to biotic drivers increases with niche breadth. We see similar relationships when considering range size instead of niche breadth. Surprisingly, we find no effects of latitude on the relative effect of climatic versus biotic drivers. Our work suggests that populations of species with small and large ranges experience similar extirpation risks due to the negative impacts of climate change. By contrast, populations of species with large (but not small) ranges may be highly susceptible to changes in densities or distributions of interacting species. 
    more » « less