skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Significant DBSCAN towards Statistically Robust Clustering
Given a collection of geo-distributed points, we aim to detect statistically significant clusters of varying shapes and densities. Spatial clustering has been widely used many important societal applications, including public health and safety, transportation, environment, etc. The problem is challenging because many application domains have low-tolerance to false positives (e.g., falsely claiming a crime cluster in a community can have serious negative impacts on the residents) and clusters often have irregular shapes. In related work, the spatial scan statistic is a popular technique that can detect significant clusters but it requires clusters to have certain predefined shapes (e.g., circles, rings). In contrast, density-based methods (e.g., DBSCAN) can find clusters of arbitrary shape efficiently but do not consider statistical significance, making them susceptible to spurious patterns. To address these limitations, we first propose a modeling of statistical significance in DBSCAN based clustering. Then, we propose a baseline Monte Carlo method to estimate the significance of clusters and a Dual-Convergence algorithm to accelerate the computation. Experiment results show that significant DBSCAN is very effective in removing chance patterns and the Dual-Convergence algorithm can greatly reduce execution time.  more » « less
Award ID(s):
1901099 1737633
PAR ID:
10170280
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SSTD '19: Proceedings of the 16th International Symposium on Spatial and Temporal Databases
Page Range / eLocation ID:
31 to 40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cluster detection is important and widely used in a variety of applications, including public health, public safety, transportation, and so on. Given a collection of data points, we aim to detect density-connected spatial clusters with varying geometric shapes and densities, under the constraint that the clusters are statistically significant. The problem is challenging, because many societal applications and domain science studies have low tolerance for spurious results, and clusters may have arbitrary shapes and varying densities. As a classical topic in data mining and learning, a myriad of techniques have been developed to detect clusters with both varying shapes and densities (e.g., density-based, hierarchical, spectral, or deep clustering methods). However, the vast majority of these techniques do not consider statistical rigor and are susceptible to detecting spurious clusters formed as a result of natural randomness. On the other hand, scan statistic approaches explicitly control the rate of spurious results, but they typically assume a single “hotspot” of over-density and many rely on further assumptions such as a tessellated input space. To unite the strengths of both lines of work, we propose a statistically robust formulation of a multi-scale DBSCAN, namely Significant DBSCAN+, to identify significant clusters that are density connected. As we will show, incorporation of statistical rigor is a powerful mechanism that allows the new Significant DBSCAN+ to outperform state-of-the-art clustering techniques in various scenarios. We also propose computational enhancements to speed-up the proposed approach. Experiment results show that Significant DBSCAN+ can simultaneously improve the success rate of true cluster detection (e.g., 10–20% increases in absolute F1 scores) and substantially reduce the rate of spurious results (e.g., from thousands/hundreds of spurious detections to none or just a few across 100 datasets), and the acceleration methods can improve the efficiency for both clustered and non-clustered data. 
    more » « less
  2. How to cluster event sequences generated via different point processes is an interesting and important problem in statistical machine learning. To solve this problem, we propose and discuss an effective model-based clustering method based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. The proposed model generates the event sequences with different clusters from the Hawkes processes with different parameters, and uses a Dirichlet distribution as the prior distribution of the clusters. We prove the identifiability of our mixture model and propose an effective variational Bayesian inference algorithm to learn our model. An adaptive inner iteration allocation strategy is designed to accelerate the convergence of our algorithm. Moreover, we investigate the sample complexity and the computational complexity of our learning algorithm in depth. Experiments on both synthetic and real-world data show that the clustering method based on our model can learn structural triggering patterns hidden in asynchronous event sequences robustly and achieve superior performance on clustering purity and consistency compared to existing methods. 
    more » « less
  3. Abstract Droplet-level interactions in clouds are often parameterized by a modified gamma fitted to a “global” droplet size distribution. Do “local” droplet size distributions of relevance to microphysical processes look like these average distributions? This paper describes an algorithm to search and classify characteristic size distributions within a cloud. The approach combines hypothesis testing, specifically, the Kolmogorov–Smirnov (KS) test, and a widely used class of machine learning algorithms for identifying clusters of samples with similar properties: density-based spatial clustering of applications with noise (DBSCAN) is used as the specific example for illustration. The two-sample KS test does not presume any specific distribution, is parameter free, and avoids biases from binning. Importantly, the number of clusters is not an input parameter of the DBSCAN-type algorithms but is independently determined in an unsupervised fashion. As implemented, it works on an abstract space from the KS test results, and hence spatial correlation is not required for a cluster. The method is explored using data obtained from the Holographic Detector for Clouds (HOLODEC) deployed during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) field campaign. The algorithm identifies evidence of the existence of clusters of nearly identical local size distributions. It is found that cloud segments have as few as one and as many as seven characteristic size distributions. To validate the algorithm’s robustness, it is tested on a synthetic dataset and successfully identifies the predefined distributions at plausible noise levels. The algorithm is general and is expected to be useful in other applications, such as remote sensing of cloud and rain properties. Significance StatementA typical cloud can have billions of drops spread over tens or hundreds of kilometers in space. Keeping track of the sizes, positions, and interactions of all of these droplets is impractical, and, as such, information about the relative abundance of large and small drops is typically quantified with a “size distribution.” Droplets in a cloud interact locally, however, so this work is motivated by the question of whether the cloud droplet size distribution is different in different parts of a cloud. A new method, based on hypothesis testing and machine learning, determines how many different size distributions are contained in a given cloud. This is important because the size distribution describes processes such as cloud droplet growth and light transmission through clouds. 
    more » « less
  4. Graphs have been commonly used to represent complex data structures. In models dealing with graph-structured data, multivariate parameters may not only exhibit sparse patterns but have structured sparsity and smoothness in the sense that both zero and non-zero parameters tend to cluster together. We propose a new prior for high-dimensional parameters with graphical relations, referred to as the Tree-based Low-rank Horseshoe (T-LoHo) model, that generalizes the popular univariate Bayesian horseshoe shrinkage prior to the multivariate setting to detect structured sparsity and smoothness simultaneously. The T-LoHo prior can be embedded in many high-dimensional hierarchical models. To illustrate its utility, we apply it to regularize a Bayesian high-dimensional regression problem where the regression coefficients are linked by a graph, so that the resulting clusters have flexible shapes and satisfy the cluster contiguity constraint with respect to the graph. We design an efficient Markov chain Monte Carlo algorithm that delivers full Bayesian inference with uncertainty measures for model parameters such as the number of clusters. We offer theoretical investigations of the clustering effects and posterior concentration results. Finally, we illustrate the performance of the model with simulation studies and a real data application for anomaly detection on a road network. The results indicate substantial improvements over other competing methods such as the sparse fused lasso. 
    more » « less
  5. Clustering is a fundamental tool for exploratory data analysis. One central problem in clustering is deciding if the clusters discovered by clustering methods are reliable as opposed to being artifacts of natural sampling variation. Statistical significance of clustering (SigClust) is a recently developed cluster evaluation tool for high-dimension, low-sample size data. Despite its successful application to many scientific problems, there are cases where the original SigClust may not work well. Furthermore, for specific applications, researchers may not have access to the original data and only have the dissimilarity matrix. In this case, clustering is still a valuable exploratory tool, but the original SigClust is not applicable. To address these issues, we propose a new SigClust method using multidimensional scaling (MDS). The underlying idea behind MDS-based SigClust is that one can achieve low-dimensional representations of the original data via MDS using only the dissimilarity matrix and then apply SigClust on the low-dimensional MDS space. The proposed MDS-based SigClust can circumvent the challenge of parameter estimation of the original method in high-dimensional spaces while keeping the essential clustering structure in the MDS space. Both simulations and real data applications demonstrate that the proposed method works remarkably well for assessing the statistical significance of clustering. Supplementary materials for this article are available online. 
    more » « less