skip to main content

Title: Strong Lyman-α emission in an overdense region at z = 6.8: a very large ( R ∼ 3 physical Mpc) ionized bubble in COSMOS?
ABSTRACT

Our understanding of reionization has advanced considerably over the past decade, with several results now demonstrating that the intergalactic medium transitioned from substantially neutral at z = 7 to largely reionized at z = 6. However, little remains known about the sizes of ionized bubbles at z ≳ 7 as well as the galaxy overdensities which drive their growth. Fortunately, rest-ultraviolet (UV) spectroscopic observations offer a pathway towards characterizing these ionized bubbles thanks to the resonant nature of Lyman-alpha photons. In a previous work, we presented Ly α detections from three closely separated Lyman-break galaxies at z ≃ 6.8, suggesting the presence of a large (R > 1 physical Mpc) ionized bubble in the 1.5 deg2 COSMOS field. Here, we present new deep Ly α spectra of 10 UV-bright ($\mathrm{\mathit{ M}}_{\mathrm{UV}}^{} \le -20.4$) z ≃ 6.6–6.9 galaxies in the surrounding area, enabling us to better characterize this potential ionized bubble. We confidently detect (S/N > 7) Ly α emission at z = 6.701–6.882 in nine of ten observed galaxies, revealing that the large-scale volume spanned by these sources (characteristic radius R = 3.2 physical Mpc) traces a strong galaxy overdensity (N/〈N〉 ≳ 3). Our data additionally confirm that the Ly more » α emission of UV-bright galaxies in this volume is significantly enhanced, with 40 per cent (4/10) showing strong Ly α emission (equivalent width >25 Å) compared to the 8–9 per cent found on average at z ∼ 7. The median Ly α equivalent width of our observed galaxies is also ≈2 times that typical at z ∼ 7, consistent with expectations if a very large (R ∼ 3 physical Mpc) ionized bubble is allowing the Ly α photons to cosmologically redshift far into the damping wing before encountering H i.

« less
Authors:
 ;  
Publication Date:
NSF-PAR ID:
10363750
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
511
Issue:
4
Page Range or eLocation-ID:
p. 6042-6054
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Reionization-era galaxies tend to exhibit weak Ly α emission, likely reflecting attenuation from an increasingly neutral IGM. Recent observations have begun to reveal exceptions to this picture, with strong Ly α emission now known in four of the most massive z = 7–9 galaxies in the CANDELS fields, all of which also exhibit intense [O iii]+H β emission (EW > 800 Å). To better understand why Ly α is anomalously strong in a subset of massive z ≃ 7–9 galaxies, we have initiated an MMT/Binospec survey targeting a larger sample (N = 22) of similarly luminous (≃1–6 L$^{\ast }_{\mathrm{UV}}$) z ≃ 7 galaxies selected over very wide-area fields (∼3 deg2). We confidently (>7σ) detect Ly α in 78 per cent (7/9) of galaxies with strong [O iii]+H β emission (EW > 800 Å) as opposed to only 8 per cent (1/12) of galaxies with more moderate (EW = 200–800 Å) [O iii]+H β. We argue that the higher Ly α EWs of the strong [O iii]+H β population likely reflect enhanced ionizing photon production efficiency owing to their large sSFRs (≳30 Gyr−1). We also find evidence that Ly α transmission from massive galaxies declines less rapidly over 6 < z < 7 than in low-mass lensed systems. In particular, our data suggest no strong evolution in Ly α transmission, consistent with a picturemore »wherein massive z ≃ 7 galaxies often reside in large ionized regions. We detect three closely separated (R = 1.7 physical Mpc) z ≃ 7 Ly α emitters in our sample, conceivably tracing a large ionized structure that is consistent with this picture. We detect tentative evidence for an overdensity in this region, implying a large ionizing photon budget in the surrounding volume.« less
  2. Abstract

    We present the results from a spectroscopic survey using the MOSFIRE near-infrared spectrograph on the 10 m Keck telescope to search for Lyαemission from candidate galaxies atz∼ 9–10 in four of the CANDELS fields (GOODS-N, EGS, UDS, and COSMOS). We observed 11 target galaxies, detecting Lyαfrom one object in ∼8.1 hr of integration, atz= 8.665 ± 0.001 with an integrated signal-to-noise ratio > 7. This galaxy is in the CANDELS Extended Groth Strip (EGS) field and lies physically close (3.5 physical Mpc [pMpc]) to another confirmed galaxy in this field with Lyαdetected atz= 8.683. The detection of Lyαsuggests the existence of large (∼1 pMpc) ionized bubbles fairly early in the reionization process. We explore the ionizing output needed to create bubbles of this size at this epoch and find that such a bubble requires more than the ionizing power provided by the full expected population of galaxies (by integrating the UV luminosity function down toMUV= −13). The Lyαwe detect would be able to escape the predominantly neutral intergalactic medium at this epoch if our detected galaxy is inhabiting an overdensity, which would be consistent with the photometric overdensity previously identified in this region by Finkelstein et al. This impliesmore »that the CANDELS EGS field is hosting an overdensity atz= 8.7 that is powering one or more ionized bubbles, a hypothesis that will be imminently testable with forthcoming James Webb Space Telescope observations in this field.

    « less
  3. ABSTRACT

    Recent work has shown that UV-luminous reionization-era galaxies often exhibit strong Lyman-alpha emission despite being situated at redshifts where the IGM is thought to be substantially neutral. It has been argued that this enhanced Ly α transmission reflects the presence of massive galaxies in overdense regions which power large ionized bubbles. An alternative explanation is that massive galaxies shift more of their Ly α profile to large velocities (relative to the systemic redshift) where the IGM damping wing absorption is reduced. Such a mass-dependent trend is seen at lower redshifts, but whether one exists at z ∼ 7 remains unclear owing to the small number of existing systemic redshift measurements in the reionization era. This is now changing with the emergence of [C ii]-based redshifts from ALMA. Here, we report MMT/Binospec Ly α spectroscopy of eight UV-bright (MUV ∼ −22) galaxies at z ≃ 7 selected from the ALMA REBELS survey. We detect Ly α in four of eight galaxies and use the [C ii] systemic redshifts to investigate the Ly α velocity profiles. The Ly α lines are significantly redshifted from systemic (average velocity offset = 223 km s–1) and broad (FWHM ≈ 300–650 km s−1), with two sources showing emission extending to ≈750 km s−1. We find that the broadest Ly α profiles aremore »associated with the largest [C ii] line widths, suggesting a potential link between the Ly α FWHM and the dynamical mass. Since Ly α photons at high velocities transmit efficiently through the z = 7 IGM, our data suggest that velocity profiles play a significant role in boosting the Ly α visibility of the most UV-luminous reionization-era galaxies.

    « less
  4. ABSTRACT The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity–halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity–halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, $\overline{x}_{\mathrm{ H}\,{\small I}}$, atmore »z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.55_{-0.13}^{+0.11}$ with scatter, compared to $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.59_{-0.14}^{+0.12}$ without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.« less
  5. ABSTRACT

    We present new [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$ observations of five bright z ∼ 7 Lyman-break galaxies spectroscopically confirmed by ALMA through [${\rm C\, {\small II}}$] 158 $\mu \mathrm{{m}}$, unlike recent [${\rm O\, {\small III}}$] detections where Lyman α was used. This nearly doubles the sample of Epoch of Reionization galaxies with robust (5σ) [${\rm C\, {\small II}}$] and [${\rm O\, {\small III}}$] detections. We perform a multiwavelength comparison with new deep HST images of the rest-frame UV, whose compact morphology aligns well with [${\rm O\, {\small III}}$] tracing ionized gas. In contrast, we find more spatially extended [${\rm C\, {\small II}}$] emission likely produced in neutral gas, as indicated by an [${\rm N\, {\small II}}$] 205-$\mu \mathrm{{m}}$ non-detection in one source. We find a correlation between the optical ${[{\rm O\, {\small III}}]}+ {\mathrm{H\,\beta }}$ equivalent width and [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$], as seen in local metal-poor dwarf galaxies. cloudy models of a nebula of typical density harbouring a young stellar population with a high-ionization parameter adequately reproduce the observed lines. Surprisingly, however, our models fail to reproduce the strength of [${\rm O\, {\small III}}$] 88-$\mu \mathrm{{m}}$, unless we assume an α/Fe enhancement and near-solar nebular oxygenmore »abundance. On spatially resolved scales, we find [${\rm O\, {\small III}}$]/[${\rm C\, {\small II}}$] shows a tentative anticorrelation with infrared excess, LIR/LUV, also seen on global scales in the local Universe. Finally, we introduce the far-infrared spectral energy distribution fitting code mercurius to show that dust-continuum measurements of one source appear to favour a low dust temperature and correspondingly high dust mass. This implies a high stellar metallicity yield and may point towards the need of dust production or grain-growth mechanisms beyond supernovae.

    « less