skip to main content

Title: The role of machine learning in scientific workflows
Machine learning (ML) is being applied in a number of everyday contexts from image recognition, to natural language processing, to autonomous vehicles, to product recommendation. In the science realm, ML is being used for medical diagnosis, new materials development, smart agriculture, DNA classification, and many others. In this article, we describe the opportunities of using ML in the area of scientific workflow management. Scientific workflows are key to today’s computational science, enabling the definition and execution of complex applications in heterogeneous and often distributed environments. We describe the challenges of composing and executing scientific workflows and identify opportunities for applying ML techniques to meet these challenges by enhancing the current workflow management system capabilities. We foresee that as the ML field progresses, the automation provided by workflow management systems will greatly increase and result in significant improvements in scientific productivity.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The International Journal of High Performance Computing Applications
Page Range / eLocation ID:
1128 to 1139
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Computational workflows are widely used in data analysis, enabling automated tracking of steps and storage of provenance information, leading to innovation and decision-making in the scientific community. However, the growing popularity of workflows has raised concerns about reproducibility and reusability which can hinder collaboration between institutions and users. In order to address these concerns, it is important to standardize workflows or provide tools that offer a framework for describing workflows and enabling computational reusability. One such set of standards that has recently emerged is the Common Workflow Language (CWL), which offers a robust and flexible framework for data analysis tools and workflows. To promote portability, reproducibility, and interoperability of AI/ML workflows, we developedgeoweaver_cwl, a Python package that automatically describes AI/ML workflows from a workflow management system (WfMS) named Geoweaver into CWL. In this paper, we test our Python package on multiple use cases from different domains. Our objective is to demonstrate and verify the utility of this package. We make all the code and dataset open online and briefly describe the experimental implementation of the package in this paper, confirming thatgeoweaver_cwlcan lead to a well-versed AI process while disclosing opportunities for further extensions. Thegeoweaver_cwlpackage is publicly released online at exemplar results are accessible at:

    more » « less
  2. Scientific workflows drive most modern large-scale science breakthroughs by allowing scientists to define their computations as a set of jobs executed in a given order based on their data dependencies. Workflow management systems (WMSs) have become key to automating scientific workflows-executing computational jobs and orchestrating data transfers between those jobs running on complex high-performance computing (HPC) platforms. Traditionally, WMSs use files to communicate between jobs: a job writes out files that are read by other jobs. However, HPC machines face a growing gap between their storage and compute capabilities. To address that concern, the scientific community has adopted a new approach called in situ, which bypasses costly parallel filesystem I/O operations with faster in-memory or in-network communications. When using in situ approaches, communication and computations can be interleaved. In this work, we leverage the Decaf in situ dataflow framework to accelerate task-based scientific workflows managed by the Pegasus WMS, by replacing file communications with faster MPI messaging. We propose a new execution engine that uses Decaf to manage communications within a sub-workflow (i.e., set of jobs) to optimize inter-job communications. We consider two workflows in this study: (i) a synthetic workflow that benchmarks and compares file- and MPI-based communication; and (ii) a realistic bioinformatics workflow that computes mu-tational overlaps in the human genome. Experiments show that in situ communication can improve the bioinformatics workflow execution time by 22% to 30% compared with file communication. Our results motivate further opportunities and challenges for bridging traditional WMSs with in situ frameworks. 
    more » « less
  3. In the era of big data, materials science workflows need to handle large-scale data distribution, storage, and computation. Any of these areas can become a performance bottleneck. We present a framework for analyzing internal material structures (e.g., cracks) to mitigate these bottlenecks. We demonstrate the effectiveness of our framework for a workflow performing synchrotron X-ray computed tomography reconstruction and segmentation of a silica-based structure. Our framework provides a cloud-based, cutting-edge solution to challenges such as growing intermediate and output data and heavy resource demands during image reconstruction and segmentation. Specifically, our framework efficiently manages data storage, scaling up compute resources on the cloud. The multi-layer software structure of our framework includes three layers. A top layer uses Jupyter notebooks and serves as the user interface. A middle layer uses Ansible for resource deployment and managing the execution environment. A low layer is dedicated to resource management and provides resource management and job scheduling on heterogeneous nodes (i.e., GPU and CPU). At the core of this layer, Kubernetes supports resource management, and Dask enables large-scale job scheduling for heterogeneous resources. The broader impact of our work is four-fold: through our framework, we hide the complexity of the cloud’s software stack to the user who otherwise is required to have expertise in cloud technologies; we manage job scheduling efficiently and in a scalable manner; we enable resource elasticity and workflow orchestration at a large scale; and we facilitate moving the study of nonporous structures, which has wide applications in engineering and scientific fields, to the cloud. While we demonstrate the capability of our framework for a specific materials science application, it can be adapted for other applications and domains because of its modular, multi-layer architecture. 
    more » « less
  4. Computational science today depends on complex, data-intensive applications operating on datasets from a variety of scientific instruments. A major challenge is the integration of data into the scientist's workflow. Recent advances in dynamic, networked cloud resources provide the building blocks to construct reconfigurable, end-to-end infrastructure that can increase scientific productivity. However, applications have not adequately taken advantage of these advanced capabilities. In this work, we have developed a novel network-centric platform that enables high-performance, adaptive data flows and coordinated access to distributed cloud resources and data repositories for atmospheric scientists. We demonstrate the effectiveness of our approach by evaluating time-critical, adaptive weather sensing workflows, which utilize advanced networked infrastructure to ingest live weather data from radars and compute data products used for timely response to weather events. The workflows are orchestrated by the Pegasus workflow management system and were chosen because of their diverse resource requirements. We show that our approach results in timely processing of Nowcast workflows under different infrastructure configurations and network conditions. We also show how workflow task clustering choices affect throughput of an ensemble of Nowcast workflows with improved turnaround times. Additionally, we find that using our network-centric platform powered by advanced layer2 networking techniques results in faster, more reliable data throughput, makes cloud resources easier to provision, and the workflows easier to configure for operational use and automation. 
    more » « less
  5. Scientific research and development campaigns are materialized by workflows of applications executing on high-performance computing (HPC) systems. These applications con-sist of tasks that can have inter- or intra-application flows of data to achieve the research goals successfully. These dataflows create dependencies among the tasks and cause resource con-tention on shared storage systems, thus limiting the aggregated I/O bandwidth achieved by the workflow. However, these I/O performance issues are often solved by tedious and manual efforts that demand holistic knowledge about the data dependencies in the workflow and the information about the infrastructure being utilized. Taking this into consideration, we design DFMan, a graph-based dataflow management and optimization framework for maximizing I/O bandwidth by leveraging the powerful storage stack on HPC systems to manage data sharing optimally among the tasks in the workflows. In particular, we devise a graph-based optimization algorithm that can leverage an intuitive graph representation of dataflow- and system-related information, and automatically carry out co-scheduling of task and data placement. According to our experiments, DFMan optimizes a wide variety of scientific workflows such as Hurricane 3D on Cloud Model 1 (CM1), Montage Carina Nebula (NGC3372), and an emulated dataflow kernel of the Multiscale Machine-learned Modeling Infrastructure (MuMMI I/O) on the Lassen supercomputer, and improves their aggregated I/O bandwidth by up to 5.42 x, 2.12 x and 1.29 x, respectively, compared to the baseline bandwidth. 
    more » « less