skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbiomes Reduce Their Host’s Sensitivity to Interspecific Interactions
ABSTRACT Bacteria associated with eukaryotic hosts can affect host fitness and trophic interactions between eukaryotes, but the extent to which bacteria influence the eukaryotic species interactions within trophic levels that modulate biodiversity and species coexistence is mostly unknown. Here, we used phytoplankton, which are a classic model for evaluating interactions between species, grown with and without associated bacteria to test whether the bacteria alter the strength and type of species interactions within a trophic level. We demonstrate that host-associated bacteria alter host growth rates and carrying capacity. This did not change the type but frequently changed the strength of host interspecific interactions by facilitating host growth in the presence of an established species. These findings indicate that microbiomes can regulate their host species’ interspecific interactions. As between-species interaction strength impacts their ability to coexist, our findings show that microbiomes have the potential to modulate eukaryotic species diversity and community composition. IMPORTANCE Description of the Earth’s microbiota has recently undergone a phenomenal expansion that has challenged basic assumptions in many areas of biology, including hominid evolution, human gastrointestinal and neurodevelopmental disorders, and plant adaptation to climate change. By using the classic model system of freshwater phytoplankton that has been drawn upon for numerous foundational theories in ecology, we show that microbiomes, by facilitating their host population, can also influence between-species interactions among their eukaryotic hosts. Between-species interactions, including competition for resources, has been a central tenet in the field of ecology because of its implications for the diversity and composition of communities and how this in turn shapes ecosystem functioning.  more » « less
Award ID(s):
1737680
PAR ID:
10170962
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
mBio
Volume:
11
Issue:
1
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mobile genetic elements (MGEs), such as plasmids and bacteriophages, are major contributors to the ecology and evolution of host-associated microbes due to a continuum of symbiotic interactions and by mediating gene flow via horizontal gene transmission. However, while myriad studies have investigated relationships between MGEs and variation in fitness among microbial and eukaryotic hosts, few studies have incorporated this variation into the context of MGE evolution and ecology. Combining HiC-resolved metagenomics with the model honey bee worker gut microbiome, we show that the worker gut contains a dense, nested MGE community that exhibits a wide degree of host range variation among microbial hosts. Using measures of gene similarity and syntenty, we show that plasmids likely mediate gene flow between individual honey bee colonies, though these plasmids exhibit broad host range variation within their individual microbiomes. We further show that phage-microbe networks exhibit high variation among individual metagenomes, and that phages show broad host range with respect to both the number and phylogenetic distance of their hosts. Finally, we provide evidence that measures of nucleotide variation positively correlate with host range in bee-associated phages, and that functional targets of diversifying selection are partitioning differently between broad or narrow host range phages. Our work underscores the variability of MGE x microbial interactions within host-associated microbial communities and highlights the genomic variation associated with MGE host range diversity. 
    more » « less
  2. null (Ed.)
    While studies show that nutrient pollution shifts reef trophic interactions between fish, macroalgae, and corals, we know less about how the microbiomes associated with these organisms react to such disturbances. To investigate how microbiome dynamics are affected during nutrient pollution, we exposed replicate Porites lobata corals colonized by the fish Stegastes nigricans, which farm an algal matrix on the coral, to a pulse of nutrient enrichment over a two-month period and examined the microbiome of each partner using 16S amplicon analysis. We found 51 amplicon sequence variants (ASVs) shared among the three hosts. Coral microbiomes had the lowest diversity with over 98% of the microbiome dominated by a single genus, Endozoicomonas. Fish and algal matrix microbiomes were ~20 to 70× more diverse and had higher evenness compared to the corals. The addition of nutrients significantly increased species richness and community variability between samples of coral microbiomes but not the fish or algal matrix microbiomes, demonstrating that coral microbiomes are less resistant to nutrient pollution than their trophic partners. Furthermore, the 51 common ASVs within the 3 hosts indicate microbes that may be shared or transmitted between these closely associated organisms, including Vibrionaceae bacteria, many of which can be pathogenic to corals. 
    more » « less
  3. Phytoplankton support complex bacterial microbiomes that rely on phytoplankton-derived extracellular compounds and perform functions necessary for algal growth. Recent work has revealed sophisticated interactions and exchanges of molecules between specific phytoplankton–bacteria pairs, but the role of host genotype in regulating those interactions is unknown. Here, we show how phytoplankton microbiomes are shaped by intraspecific genetic variation in the host using global environmental isolates of the model phytoplankton host Thalassiosira rotula and a laboratory common garden experiment. A set of 81 environmental T. rotula genotypes from three ocean basins and eight genetically distinct populations did not reveal a core microbiome. While no single bacterial phylotype was shared across all genotypes, we found strong genotypic influence of T. rotula , with microbiomes associating more strongly with host genetic population than with environmental factors. The microbiome association with host genetic population persisted across different ocean basins, suggesting that microbiomes may be associated with host populations for decades. To isolate the impact of host genotype on microbiomes, a common garden experiment using eight genotypes from three distinct host populations again found that host genotype influenced microbial community composition, suggesting that a process we describe as genotypic filtering, analogous to environmental filtering, shapes phytoplankton microbiomes. In both the environmental and laboratory studies, microbiome variation between genotypes suggests that other factors influenced microbiome composition but did not swamp the dominant signal of host genetic background. The long-term association of microbiomes with specific host genotypes reveals a possible mechanism explaining the evolution and maintenance of complex phytoplankton–bacteria chemical exchanges. 
    more » « less
  4. Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts’ microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition. 
    more » « less
  5. Abstract The species area relationship is a classic ecological law describing the relationship between habitat increase and the number of species. Species area relationships are resoundingly positive across macrobes such as plants and animals, and emerge through non-exclusive stochastic and deterministic processes including changes in immigration and extinction, drift, and environmental heterogeneity. Due to unique attributes of the microbial lifestyle, they may not abide by similar rules as macrobes, especially when it comes to spatial scaling. We predict that host-associated microbiomes will exhibit shallower species area relationships than free-living microbiomes due to strong host filtering, and that the species area relationships of bacteria will be shallower than fungi due primarily to differences in dispersal ability. We test these predictions in a relatively simple field system where bromeliad phytotelmata comprise aquatic ecosystems that support invertebrates and environmental substrates such as detritus. Larger phytotelmata generate larger habitat islands for microbiomes allowing us to explicitly examine their species area relationships. We find that the species area relationships of free-living and host-associated microbiomes differ, as do those of microbiome members. By assessing the relationship between environmental conditions and richness, and measuring diversity across scales, we posit that these observed differences in species area relationships are owed to differences in realized niches and dispersal abilities among microbes. These findings highlight that the classic laws of biological spatial scaling do not necessarily accurately represent microbiomes, and that the influence of area on diversity appears to be more important for some microbiomes and microbes than others. 
    more » « less