Title: Functional Architecture of the Cerebral Cortex
Recent research in the neurosciences has revealed a wealth of new information about the structural organization and physiological operation of the cerebral cortex. These details span vast spatial scales and range from the expression, arrangement, and interaction of molecular gene products at the synapse to the organization of computational networks across the whole brain. This chapter highlights recent discoveries that have laid bare important aspects of the brain’s functional architecture. It begins by describing the dynamic and contingent arrangement of subcellular elements in synaptic connections. Amid this complexity, several common neural circuit motifs, identifi ed across multiple species and preparations, shape the electrophysiological signaling in the cortex. It then turns to the topic of network organization, spurred by routine capacity for noninvasive MRI in humans, where interdisciplinary tools are lending new insights into large-scale principles of brain organization. Discussion follows on one of the most important aspects of brain architecture; namely, the plasticity that affords an animal fl exible behavior. In closing, refl ections are put forth on the nature of the brain’s complexity, and how its biological details might be best captured in computational models in the future. more »« less
Cocuzza, Carrisa V; Sanchez-Romero, Ruben; Ito, Takuya; Mill, Ravi D; Keane, Brian P; Cole, Michael W
(, PLOS Computational Biology)
Kay, Kendrick
(Ed.)
A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating – in a highly empirically constrained manner – the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region’s unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain’s intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.
Winding, Michael; Pedigo, Benjamin D.; Barnes, Christopher L.; Patsolic, Heather G.; Park, Youngser; Kazimiers, Tom; Fushiki, Akira; Andrade, Ingrid V.; Khandelwal, Avinash; Valdes-Aleman, Javier; et al
(, Science)
INTRODUCTION A brainwide, synaptic-resolution connectivity map—a connectome—is essential for understanding how the brain generates behavior. However because of technological constraints imaging entire brains with electron microscopy (EM) and reconstructing circuits from such datasets has been challenging. To date, complete connectomes have been mapped for only three organisms, each with several hundred brain neurons: the nematode C. elegans , the larva of the sea squirt Ciona intestinalis , and of the marine annelid Platynereis dumerilii . Synapse-resolution circuit diagrams of larger brains, such as insects, fish, and mammals, have been approached by considering select subregions in isolation. However, neural computations span spatially dispersed but interconnected brain regions, and understanding any one computation requires the complete brain connectome with all its inputs and outputs. RATIONALE We therefore generated a connectome of an entire brain of a small insect, the larva of the fruit fly, Drosophila melanogaster. This animal displays a rich behavioral repertoire, including learning, value computation, and action selection, and shares homologous brain structures with adult Drosophila and larger insects. Powerful genetic tools are available for selective manipulation or recording of individual neuron types. In this tractable model system, hypotheses about the functional roles of specific neurons and circuit motifs revealed by the connectome can therefore be readily tested. RESULTS The complete synaptic-resolution connectome of the Drosophila larval brain comprises 3016 neurons and 548,000 synapses. We performed a detailed analysis of the brain circuit architecture, including connection and neuron types, network hubs, and circuit motifs. Most of the brain’s in-out hubs (73%) were postsynaptic to the learning center or presynaptic to the dopaminergic neurons that drive learning. We used graph spectral embedding to hierarchically cluster neurons based on synaptic connectivity into 93 neuron types, which were internally consistent based on other features, such as morphology and function. We developed an algorithm to track brainwide signal propagation across polysynaptic pathways and analyzed feedforward (from sensory to output) and feedback pathways, multisensory integration, and cross-hemisphere interactions. We found extensive multisensory integration throughout the brain and multiple interconnected pathways of varying depths from sensory neurons to output neurons forming a distributed processing network. The brain had a highly recurrent architecture, with 41% of neurons receiving long-range recurrent input. However, recurrence was not evenly distributed and was especially high in areas implicated in learning and action selection. Dopaminergic neurons that drive learning are amongst the most recurrent neurons in the brain. Many contralateral neurons, which projected across brain hemispheres, were in-out hubs and synapsed onto each other, facilitating extensive interhemispheric communication. We also analyzed interactions between the brain and nerve cord. We found that descending neurons targeted a small fraction of premotor elements that could play important roles in switching between locomotor states. A subset of descending neurons targeted low-order post-sensory interneurons likely modulating sensory processing. CONCLUSION The complete brain connectome of the Drosophila larva will be a lasting reference study, providing a basis for a multitude of theoretical and experimental studies of brain function. The approach and computational tools generated in this study will facilitate the analysis of future connectomes. Although the details of brain organization differ across the animal kingdom, many circuit architectures are conserved. As more brain connectomes of other organisms are mapped in the future, comparisons between them will reveal both common and therefore potentially optimal circuit architectures, as well as the idiosyncratic ones that underlie behavioral differences between organisms. Some of the architectural features observed in the Drosophila larval brain, including multilayer shortcuts and prominent nested recurrent loops, are found in state-of-the-art artificial neural networks, where they can compensate for a lack of network depth and support arbitrary, task-dependent computations. Such features could therefore increase the brain’s computational capacity, overcoming physiological constraints on the number of neurons. Future analysis of similarities and differences between brains and artificial neural networks may help in understanding brain computational principles and perhaps inspire new machine learning architectures. The connectome of the Drosophila larval brain. The morphologies of all brain neurons, reconstructed from a synapse-resolution EM volume, and the synaptic connectivity matrix of an entire brain. This connectivity information was used to hierarchically cluster all brains into 93 cell types, which were internally consistent based on morphology and known function.
Anderson, Kevin M.; Ge, Tian; Kong, Ru; Patrick, Lauren M.; Spreng, R. Nathan; Sabuncu, Mert R.; Yeo, B. T.; Holmes, Avram J.
(, Proceedings of the National Academy of Sciences)
null
(Ed.)
Human cortex is patterned by a complex and interdigitated web of large-scale functional networks. Recent methodological breakthroughs reveal variation in the size, shape, and spatial topography of cortical networks across individuals. While spatial network organization emerges across development, is stable over time, and is predictive of behavior, it is not yet clear to what extent genetic factors underlie interindividual differences in network topography. Here, leveraging a nonlinear multidimensional estimation of heritability, we provide evidence that individual variability in the size and topographic organization of cortical networks are under genetic control. Using twin and family data from the Human Connectome Project ( n = 1,023), we find increased variability and reduced heritability in the size of heteromodal association networks ( h 2 : M = 0.34, SD = 0.070), relative to unimodal sensory/motor cortex ( h 2 : M = 0.40, SD = 0.097). We then demonstrate that the spatial layout of cortical networks is influenced by genetics, using our multidimensional estimation of heritability ( h 2 - multi; M = 0.14, SD = 0.015). However, topographic heritability did not differ between heteromodal and unimodal networks. Genetic factors had a regionally variable influence on brain organization, such that the heritability of network topography was greatest in prefrontal, precuneus, and posterior parietal cortex. Taken together, these data are consistent with relaxed genetic control of association cortices relative to primary sensory/motor regions and have implications for understanding population-level variability in brain functioning, guiding both individualized prediction and the interpretation of analyses that integrate genetics and neuroimaging.
Sun, Guanhua; Mano, Tomoyuki; Shi, Shoi; Li, Alvin; Ode, Koji L; Rosi-Andersen, Alex; Pedron, Erica; Brown, Steven A; Ueda, Hiroki R; Kompotis, Konstantinos; et al
(, PLOS Biology)
Hilgetag, Claus C
(Ed.)
The mouse brain’s activity changes drastically over a day despite being generated from the same neurons and physical connectivity. To better understand this, we develop an experimental-computational pipeline to determine which neurons and networks are most active at different times of the day. We genetically mark active neurons of freely behaving mice at four times of the day with a c-Fos activity-dependent TRAP2 system. Neurons are imaged and digitized in 3D, and their molecular properties are inferred from the latest brain spatial transcriptomic dataset. We then develop a new computational method to analyze the network formed by the identified active neurons. Applying this pipeline, we observe region and layer-specific activation of neurons in the cortex, especially activation of layer five neurons at the end of the dark (wake) period. We also observe a shift in the balance of excitatory (glutamatergic) neurons versus inhibitory (GABAergic) neurons across the whole brain, especially in the thalamus. Moreover, as the dark (wake) period progresses, the network formed by the active neurons becomes less modular, and the hubs switch from subcortical regions, such as the posterior hypothalamic nucleus, to cortical regions in the default mode network. Taken together, we present a pipeline to understand which neurons and networks may be most activated in the mouse brain during an experimental protocol, and use this pipeline to understand how brain activity changes over the course of a day.
Christos H. Papadimitriou, Santosh S.
(, Proceedings of the National Academy of Sciences of the United States of America)
Our expanding understanding of the brain at the level of neurons and synapses, and the level of cognitive phenomena such as language, leaves a formidable gap between these two scales. Here we introduce a computational system which promises to bridge this gap: the Assembly Calculus. It encompasses operations on assemblies of neurons, such as project, associate, and merge, which appear to be implicated in cognitive phenomena, and can be shown, analytically as well as through simulations, to be plausibly realizable at the level of neurons and synapses. We demonstrate the reach of this system by proposing a brain architecture for syntactic processing in the production of language, compatible with recent experimental results. Abstract Assemblies are large populations of neurons believed to imprint memories, concepts, words, and other cognitive information. We identify a repertoire of operations on assemblies. These operations correspond to properties of assemblies observed in experiments, and can be shown, analytically and through simulations, to be realizable by generic, randomly connected populations of neurons with Hebbian plasticity and inhibition. Assemblies and their operations constitute a computational model of the brain which we call the Assembly Calculus, occupying a level of detail intermediate between the level of spiking neurons and synapses and that of the whole brain. The resulting computational system can be shown, under assumptions, to be, in principle, capable of carrying out arbitrary computations. We hypothesize that something like it may underlie higher human cognitive functions such as reasoning, planning, and language. In particular, we propose a plausible brain architecture based on assemblies for implementing the syntactic processing of language in cortex, which is consistent with recent experimental results.
Leopold DA, Strick PL. Functional Architecture of the Cerebral Cortex. Retrieved from https://par.nsf.gov/biblio/10171006. Strüngmann Forum Reports 27.
Leopold DA, Strick PL. Functional Architecture of the Cerebral Cortex. Strüngmann Forum Reports, 27 (). Retrieved from https://par.nsf.gov/biblio/10171006.
Leopold DA, Strick PL.
"Functional Architecture of the Cerebral Cortex". Strüngmann Forum Reports 27 (). Country unknown/Code not available. https://par.nsf.gov/biblio/10171006.
@article{osti_10171006,
place = {Country unknown/Code not available},
title = {Functional Architecture of the Cerebral Cortex},
url = {https://par.nsf.gov/biblio/10171006},
abstractNote = {Recent research in the neurosciences has revealed a wealth of new information about the structural organization and physiological operation of the cerebral cortex. These details span vast spatial scales and range from the expression, arrangement, and interaction of molecular gene products at the synapse to the organization of computational networks across the whole brain. This chapter highlights recent discoveries that have laid bare important aspects of the brain’s functional architecture. It begins by describing the dynamic and contingent arrangement of subcellular elements in synaptic connections. Amid this complexity, several common neural circuit motifs, identifi ed across multiple species and preparations, shape the electrophysiological signaling in the cortex. It then turns to the topic of network organization, spurred by routine capacity for noninvasive MRI in humans, where interdisciplinary tools are lending new insights into large-scale principles of brain organization. Discussion follows on one of the most important aspects of brain architecture; namely, the plasticity that affords an animal fl exible behavior. In closing, refl ections are put forth on the nature of the brain’s complexity, and how its biological details might be best captured in computational models in the future.},
journal = {Strüngmann Forum Reports},
volume = {27},
author = {Leopold DA, Strick PL},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.