skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking Biodiversity Data Using Evolutionary History
All life on earth is linked by a shared evolutionary history. Even before Darwin developed the theory of evolution, Linnaeus categorized types of organisms based on their shared traits. We now know these traits derived from these species’ shared ancestry. This evolutionary history provides a natural framework to harness the enormous quantities of biological data being generated today. The Open Tree of Life project is a collaboration developing tools to curate and share evolutionary estimates (phylogenies) covering the entire tree of life (Hinchliff et al. 2015, McTavish et al. 2017). The tree is viewable at https://tree.opentreeoflife.org, and the data is all freely available online. The taxon identifiers used in the Open Tree unified taxonomy (Rees and Cranston 2017) are mapped to identifiers across biological informatics databases, including the Global Biodiversity Information Facility (GBIF), NCBI, and others. Linking these identifiers allows researchers to easily unify data from across these different resources (Fig. 1). Leveraging a unified evolutionary framework across the diversity of life provides new avenues for integrative wide scale research. Downstream tools, such as R packages developed by the R OpenSci foundation (rotl, rgbif) (Michonneau et al. 2016, Chamberlain 2017) and others tools (Revell 2012), make accessing and combining this information straightforward for students as well as researchers (e.g. https://mctavishlab.github.io/BIO144/labs/rotl-rgbif.html). Figure 1. Example linking phylogenetic relationships accessed from the Open Tree of Life with specimen location data from Global Biodiversity Information Facility. For example, a recent publication by Santorelli et al. 2018 linked evolutionary information from Open Tree with species locality data gathered from a local field study as well as GBIF species location records to test a river-barrier hypothesis in the Amazon. By combining these data, the authors were able test a widely held biogeographic hypothesis across 1952 species in 14 taxonomic groups, and found that a river that had been postulated to drive endemism, was in fact not a barrier to gene flow. However, data provenance and taxonomic name reconciliation remain key hurdles to applying data from these large digital biodiversity and evolution community resources to answering biological questions. In the Amazonian river analysis, while they leveraged use of GBIF records as a secondary check on their species records, they relied on their an intensive local field study for their major conclusions, and preferred taxon specific phylogenetic resources over Open Tree where they were available (Santorelli et al. 2018). When Li et al. 2018 assessed large scale phylogenetic approaches, including Open Tree, for measuring community diversity, they found that synthesis phylogenies were less resolved than purpose-built phylogenies, but also found that these synthetic phylogenies were sufficient for community level phylogenetic diversity analyses. Nonetheless, data quality concerns have limited adoption of analyses data from centralized resources (McTavish et al. 2017). Taxonomic name recognition and reconciliation across databases also remains a hurdle for large scale analyses, despite several ongoing efforts to improve taxonomic interoperability and unify taxonomies, such at Catalogue of Life + (Bánki et al. 2018). In order to support innovative science, large scale digital data resources need to facilitate data linkage between resources, and address researchers' data quality and provenance concerns. I will present the model that the Open Tree of Life is using to provide evolutionary data at the scale of the entire tree of life, while maintaining traceable provenance to the publications and taxonomies these evolutionary relationships are inferred from. I will discuss the hurdles to adoption of these large scale resources by researchers, as well as the opportunities for new research avenues provided by the connections between evolutionary inferences and biodiversity digital databases.  more » « less
Award ID(s):
1759846
PAR ID:
10171009
Author(s) / Creator(s):
Date Published:
Journal Name:
Biodiversity Information Science and Standards
ISSN:
2535-0897
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    “What is crucial for your ability to communicate with me… pivots on the recipient’s capacity to interpret—to make good inferential sense of the meanings that the declarer is able to send” (Rescher 2000, p148). Conventional approaches to reconciling taxonomic information in biodiversity databases have been based on string matching for unique taxonomic name combinations (Kindt 2020, Norman et al. 2020). However, in their original context, these names pertain to specific usages or taxonomic concepts, which can subsequently vary for the same name as applied by different authors. Name-based synonym matching is a helpful first step (Guala 2016, Correia et al. 2018), but may still leave considerable ambiguity regarding proper usage (Fig. 1). Therefore, developing "taxonomic intelligence" is the bioinformatic challenge to adequately represent, and subsequently propagate, this complex name/usage interaction across trusted biodiversity data networks. How do we ensure that senders and recipients of biodiversity data not only can share messages but do so with “good inferential sense” of their respective meanings? Key obstacles have involved dealing with the complexity of taxonomic name/usage modifications through time, both in terms of accounting for and digitally representing the long histories of taxonomic change in most lineages. An important critique of proposals to use name-to-usage relationships for data aggregation has been the difficulty of scaling them up to reach comprehensive coverage, in contrast to name-based global taxonomic hierarchies (Bisby 2011). The Linnaean system of nomenclature has some unfortunate design limitations in this regard, in that taxonomic names are not unique identifiers, their meanings may change over time, and the names as a string of characters do not encode their proper usage, i.e., the name “Genus species” does not specify a source defining how to use the name correctly (Remsen 2016, Sterner and Franz 2017). In practice, many people provide taxonomic names in their datasets or publications but not a source specifying a usage. The information needed to map the relationships between names and usages in taxonomic monographs or revisions is typically not presented it in a machine-readable format. New approaches are making progress on these obstacles. Theoretical advances in the representation of taxonomic intelligence have made it increasingly possible to implement efficient querying and reasoning methods on name-usage relationships (Chen et al. 2014, Chawuthai et al. 2016, Franz et al. 2015). Perhaps most importantly, growing efforts to produce name-usage mappings on a medium scale by data providers and taxonomic authorities suggest an all-or-nothing approach is not required. Multiple high-profile biodiversity databases have implemented internal tools for explicitly tracking conflicting or dynamic taxonomic classifications, including eBird using concept relationships from AviBase (Lepage et al. 2014); NatureServe in its Biotics database; iNaturalist using its taxon framework (Loarie 2020); and the UNITE database for fungi (Nilsson et al. 2019). Other ongoing projects incorporating taxonomic intelligence include the Flora of Alaska (Flora of Alaska 2020), the Mammal Diversity Database (Mammal Diversity Database 2020) and PollardBase for butterfly population monitoring (Campbell et al. 2020). 
    more » « less
  2. The Copepoda is a clade of pancrustaceans containing 14,485 species that are extremely varied in their morphology and lifestyle. Not only do copepods dominate marine plankton and sediment communities and make up a sizeable component of the freshwater plankton, but over 6,000 species are symbiotically associated with every major phylum of marine metazoans, mostly as parasites. Unfortunately, our understanding of copepod evolutionary relationships is relatively limited in part because of their extremely divergent morphology, sparse taxon sampling in molecular phylogenetic analyses, a reliance on only a handful of molecular markers, and little taxonomic overlap between phylogenetic studies. Here, a synthesis tree method is used to integrate published phylogenies into a more comprehensive tree of copepods by leveraging phylogenetic and taxonomic data. A literature review in this study finds fewer than 500 species of copepods have been sampled in molecular phylogenetic studies. Using the Open Tree of Life platform, those taxa that have been sampled in previous phylogenetic studies are grafted together and combined with the underlying copepod taxonomic hierarchy from the Open Tree of Life Taxonomy to make a synthesis phylogeny of all copepod species. Taxon sampling with respect to molecular phylogenetic analyses is reviewed for all orders of copepods and shows only 3% of copepod species have been sampled in phylogenetic studies. The resulting synthesis phylogeny reveals copepods have transitioned to a parasitic lifestyle on at least 14 occasions. We examine the underlying phylogenetic, taxonomic, and natural history data supporting these transitions to parasitism; review the species diversity of each parasitic clade; and identify key areas for further phylogenetic investigation. 
    more » « less
  3. Making the most of biodiversity data requires linking observations of biological species from multiple sources both efficiently and accurately (Bisby 2000, Franz et al. 2016). Aggregating occurrence records using taxonomic names and synonyms is computationally efficient but known to experience significant limitations on accuracy when the assumption of one-to-one relationships between names and biological entities breaks down (Remsen 2016, Franz and Sterner 2018). Taxonomic treatments and checklists provide authoritative information about the correct usage of names for species, including operational representations of the meanings of those names in the form of range maps, reference genetic sequences, or diagnostic traits. They increasingly provide taxonomic intelligence in the form of precise description of the semantic relationships between different published names in the literature. Making this authoritative information Findable, Accessible, Interoperable, and Reusable (FAIR; Wilkinson et al. 2016) would be a transformative advance for biodiversity data sharing and help drive adoption and novel extensions of existing standards such as the Taxonomic Concept Schema and the OpenBiodiv Ontology (Kennedy et al. 2006, Senderov et al. 2018). We call for the greater, global Biodiversity Information Standards (TDWG) and taxonomy community to commit to extending and expanding on how FAIR applies to biodiversity data and include practical targets and criteria for the publication and digitization of taxonomic concept representations and alignments in taxonomic treatments, checklists, and backbones. As a motivating case, consider the abundantly sampled North American deer mouse— Peromyscus maniculatus (Wagner 1845)—which was recently split from one continental species into five more narrowly defined forms, so that the name P. maniculatus is now only applied east of the Mississippi River (Bradley et al. 2019, Greenbaum et al. 2019). That single change instantly rendered ambiguous ~7% of North American mammal records in the Global Biodiversity Information Facility (n=242,663, downloaded 2021-06-04; GBIF.org 2021) and ⅓ of all National Ecological Observatory Network (NEON) small mammal samples (n=10,256, downloaded 2021-06-27). While this type of ambiguity is common in name-based databases when species are split, the example of P. maniculatus is particularly striking for its impact upon biological questions ranging from hantavirus surveillance in North America to studies of climate change impacts upon rodent life-history traits. Of special relevance to NEON sampling is recent evidence suggesting deer mice potentially transmit SARS-CoV-2 (Griffin et al. 2021). Automating the updating of occurrence records in such cases and others will require operational representations of taxonomic concepts—e.g., range maps, reference sequences, and diagnostic traits—that are FAIR in addition to taxonomic concept alignment information (Franz and Peet 2009). Despite steady progress, it remains difficult to find, access, and reuse authoritative information about how to apply taxonomic names even when it is already digitized. It can also be difficult to tell without manual inspection whether similar types of concept representations derived from multiple sources, such as range maps or reference sequences selected from different research articles or checklists, are in fact interoperable for a particular application. The issue is therefore different from important ongoing efforts to digitize trait information in species circumscriptions, for example, and focuses on how already digitized knowledge can best be packaged to inform human experts and artifical intelligence applications (Sterner and Franz 2017). We therefore propose developing community guidelines and criteria for FAIR taxonomic concept representations as "semantic artefacts" of general relevance to linked open data and life sciences research (Le Franc et al. 2020). 
    more » « less
  4. The Global Biodiversity Information Facility (GBIF 2022a) has indexed more than 2 billion occurrence records from 70,147 datasets. These datasets often include "hidden" biotic interaction data because biodiversity communities use the Darwin Core standard (DwC, Wieczorek et al. 2012) in different ways to document biotic interactions. In this study, we extracted biotic interactions from GBIF data using an approach similar to that employed in the Global Biotic Interactions (GloBI; Poelen et al. 2014) and summarized the results. Here we aim to present an estimation of the interaction data available in GBIF, showing that biotic interaction claims can be automatically found and extracted from GBIF. Our results suggest that much can be gained by an increased focus on development of tools that help to index and curate biotic interaction data in existing datasets. Combined with data standardization and best practices for sharing biotic interactions, such as the initiative on plant-pollinators interaction (Salim 2022), this approach can rapidly contribute to and meet open data principles (Wilkinson 2016). We used Preston (Elliott et al. 2020), open-source software that versions biodiversity datasets, to copy all GBIF-indexed datasets. The biodiversity data graph version (Poelen 2020) of the GBIF-indexed datasets used during this study contains 58,504 datasets in Darwin Core Archive (DwC-A) format, totaling 574,715,196 records. After retrieval and verification, the datasets were processed using Elton. Elton extracts biotic interaction data and supports 20+ existing file formats, including various types of data elements in DwC records. Elton also helps align interaction claims (e.g., host of, parasite of, associated with) to the Relations Ontology (RO, Mungall 2022), making it easier to discover datasets across a heterogeneous collection of datasets. Using specific mapping between interaction claims found in the DwC records to the terms in RO*1, Elton found 30,167,984 potential records (with non-empty values for the scanned DwC terms) and 15,248,478 records with recognized interaction types. Taxonomic name validation was performed using Nomer, which maps input names to names found in a variety of taxonomic catalogs. We only considered an interaction record valid where the interaction type could be mapped to a term in RO and where Nomer found a valid name for source and target taxa. Based on the workflow described in Fig. 1, we found 7,947,822 interaction records (52% of the potential interactions). Most of them were generic interactions ( interacts_ with , 87.5%), but the remaining 12.5% (993,477 records) included host-parasite and plant-animal interactions. The majority of the interactions records found involved plants (78%), animals (14%) and fungi (6%). In conclusion, there are many biotic interactions embedded in existing datasets registered in large biodiversity data indexers and aggregators like iDigBio, GBIF, and BioCASE. We exposed these biotic interaction claims using the combined functionality of biodiversity data tools Elton (for interaction data extraction), Preston (for reliable dataset tracking) and Nomer (for taxonomic name alignment). Nonetheless, the development of new vocabularies, standards and best practice guides would facilitate aggregation of interaction data, including the diversification of the GBIF data model (GBIF 2022b) for sharing biodiversity data beyond occurrences data. That is the aim of the TDWG Interest Group on Biological Interactions Data (TDWG 2022). 
    more » « less
  5. Abstract Biodiversity research has advanced by testing expectations of ecological and evolutionary hypotheses through the linking of large-scale genetic, distributional, and trait datasets. The rise of molecular systematics over the past 30 years has resulted in a wealth of DNA sequences from around the globe. Yet, advances in molecular systematics also have created taxonomic instability, as new estimates of evolutionary relationships and interpretations of species limits have required widespread scientific name changes. Taxonomic instability, colloquially “splits, lumps, and shuffles,” presents logistical challenges to large-scale biodiversity research because (1) the same species or sets of populations may be listed under different names in different data sources, or (2) the same name may apply to different sets of populations representing different taxonomic concepts. Consequently, distributional and trait data are often difficult to link directly to primary DNA sequence data without extensive and time-consuming curation. Here, we present RANT: Reconciliation of Avian NCBI Taxonomy. RANT applies taxonomic reconciliation to standardize avian taxon names in use in NCBI GenBank, a primary source of genetic data, to a widely used and regularly updated avian taxonomy: eBird/Clements. Of 14,341 avian species/subspecies names in GenBank, 11,031 directly matched an eBird/Clements; these link to more than 6 million nucleotide sequences. For the remaining unmatched avian names in GenBank, we used Avibase’s system of taxonomic concepts, taxonomic descriptions in Cornell’s Birds of the World, and DNA sequence metadata to identify corresponding eBird/Clements names. Reconciled names linked to more than 600,000 nucleotide sequences, ~9% of all avian sequences on GenBank. Nearly 10% of eBird/Clements names had nucleotide sequences listed under 2 or more GenBank names. Our taxonomic reconciliation is a first step towards rigorous and open-source curation of avian GenBank sequences and is available at GitHub, where it can be updated to correspond to future annual eBird/Clements taxonomic updates. 
    more » « less