skip to main content


Title: Strong Solution Existence for a Class of Degenerate Stochastic Differential Equations
Existence and uniqueness results for stochastic differential equations (SDEs) under exceptionally weak conditions are well known in the case where the diffusion coefficient is nondegenerate. Here, existence and uniqueness of a strong solution is obtained in the case of degenerate SDEs in a class that is motivated by diffusion representations for solution of Schrödinger initial value problems. In such examples, the dimension of the range of the diffusion coefficient is exactly half that of the state. In addition to the degeneracy, two types of discontinuities and singularities in the drift are allowed, where these are motivated by the structure of the Coulomb potential and the resulting solutions to the dequantized Schrödinger equation. The first type consists of discontinuities that may occur on a possibly high-dimensional manifold (up to codimension one). The second consists of singularities that may occur on a lower-dimensional manifold (up to codimension two).  more » « less
Award ID(s):
1908918
NSF-PAR ID:
10171205
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
21st IFAC World Congress
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Existence and uniqueness results for solutions of stochastic differential equations (SDEs) under exceptionally weak conditions are well known in the case where the diffusion coeffcient is nondegenerate. Here, existence and uniqueness of strong solutions is obtained in the case of degenerate SDEs in a class that is motivated by diffusion representations for solutions of Schrödinger initial value problems. In such examples, the dimension of the range of the diffusion coeffcient is exactly half that of the state. In addition to this degeneracy, two types of discontinuities and singularities in the drift are allowed, where these are motivated by the structure of the Coulomb potential. The first type consists of discontinuities that may occur on a possibly high-dimensional manifold. The second consists of singularities that may occur on a smoothly parameterized curve. 
    more » « less
  2. We study the focusing NLS equation in $R\mathbb{R}^N$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $\mathcal{ME}(u_0)=\mathcal{ME}(Q)$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $Q^\pm$, besides the standing wave $e^{it}Q$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations. 
    more » « less
  3. Abstract

    We show that for an area minimizingm‐dimensional integral currentTof codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most . This provides a strengthening of the existing ‐dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by‐product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximateTalong blow‐up scales.

     
    more » « less
  4. Consider a system of homogeneous interacting diffusive particles labeled by the nodes of a unimodular Galton–Watson tree, where the state of each node evolves infinitesi- mally like a d-dimensional diffusion whose drift coefficient depends on (the histories of) its own state and the states of neighboring nodes, and whose diffusion coefficient depends only on (the history of) its own state. Under suitable regularity assumptions on the coefficients, an autonomous characterization is obtained for the marginal dis- tribution of the dynamics of the neighborhood of a typical node in terms of a certain local equation, which is a new kind of stochastic differential equation that is nonlinear in the sense of McKean. This equation describes a finite-dimensional non-Markovian stochastic process whose infinitesimal evolution at any time depends not only on the structure and current state of the neighborhood, but also on the conditional law of the current state given the past of the states of neighborhing nodes until that time. Such marginal distributions are of interest because they arise as weak limits of both marginal distributions and empirical measures of interacting diffusions on many sequences of sparse random graphs, including the configuration model and Erdös–Rényi graphs whose average degrees converge to a finite non-zero limit. The results obtained complement classical results in the mean-field regime, which characterize the limiting dynamics of homogeneous interacting diffusions on complete graphs, as the num- ber of nodes goes to infinity, in terms of a corresponding nonlinear Markov process. However, in the sparse graph setting, the topology of the graph strongly influences the dynamics, and the analysis requires a completely different approach. The proofs of existence and uniqueness of the local equation rely on delicate new conditional independence and symmetry properties of particle trajectories on unimodular Galton– Watson trees, as well as judicious use of changes of measure. 
    more » « less
  5. We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3‑manifold. Our main result is a uniqueness theorem for such flows, which, together with an earlier existence theorem of Lott and the second named author, implies Perelman’s conjecture. We also show that this flow through singularities depends continuously on its initial condition and that it may be obtained as a limit of Ricci flows with surgery. Our results have applications to the study of diffeomorphism groups of 3‑manifolds—in particular to the generalized Smale conjecture—which will appear in a subsequent paper. 
    more » « less