We complete the proof of the Generalized Smale Conjecture, apart from the case of R P 3 RP^3 , and give a new proof of Gabai’s theorem for hyperbolic 3 3 -manifolds. We use an approach based on Ricci flow through singularities, which applies uniformly to spherical space forms, except S 3 S^3 and R P 3 RP^3 , as well as hyperbolic manifolds, to prove that the space of metrics of constant sectional curvature is contractible. As a corollary, for such a 3 3 -manifold X X , the inclusion Isom ( X , g ) → Diff ( X ) \operatorname {Isom}(X,g)\rightarrow \operatorname {Diff}(X) is a homotopy equivalence for any Riemannian metric g g of constant sectional curvature.
more »
« less
Uniqueness and stability of Ricci flow through singularities
We verify a conjecture of Perelman, which states that there exists a canonical Ricci flow through singularities starting from an arbitrary compact Riemannian 3‑manifold. Our main result is a uniqueness theorem for such flows, which, together with an earlier existence theorem of Lott and the second named author, implies Perelman’s conjecture. We also show that this flow through singularities depends continuously on its initial condition and that it may be obtained as a limit of Ricci flows with surgery. Our results have applications to the study of diffeomorphism groups of 3‑manifolds—in particular to the generalized Smale conjecture—which will appear in a subsequent paper.
more »
« less
- Award ID(s):
- 2005553
- PAR ID:
- 10353914
- Date Published:
- Journal Name:
- Acta mathematica
- Volume:
- 228
- Issue:
- 1
- ISSN:
- 1871-2509
- Page Range / eLocation ID:
- 1-215
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that the underlying complex manifold of a complete non-compact two-dimensional shrinking gradient Kähler-Ricci soliton (M,g,X) with soliton metric g with bounded scalar curvature Rg whose soliton vector field X has an integral curve along which Rg↛0 is biholomorphic to either C×P1 or to the blowup of this manifold at one point. Assuming the existence of such a soliton on this latter manifold, we show that it is toric and unique. We also identify the corresponding soliton vector field. Given these possibilities, we then prove a strong form of the Feldman-Ilmanen-Knopf conjecture for finite time Type I singularities of the Kähler-Ricci flow on compact Kähler surfaces, leading to a classification of the bubbles of such singularities in this dimension.more » « less
-
Abstract We develop a general theory of flows in the space of Riemannian metrics induced by neural network (NN) gradient descent. This is motivated in part by recent advances in approximating Calabi–Yau metrics with NNs and is enabled by recent advances in understanding flows in the space of NNs. We derive the corresponding metric flow equations, which are governed by a metric neural tangent kernel (NTK), a complicated, non-local object that evolves in time. However, many architectures admit an infinite-width limit in which the kernel becomes fixed and the dynamics simplify. Additional assumptions can induce locality in the flow, which allows for the realization of Perelman’s formulation of Ricci flow that was used to resolve the 3d Poincaré conjecture. We demonstrate that such fixed kernel regimes lead to poor learning of numerical Calabi–Yau metrics, as is expected since the associated NNs do not learn features. Conversely, we demonstrate that well-learned numerical metrics at finite-width exhibit an evolving metric-NTK, associated with feature learning. Our theory of NN metric flows therefore explains why NNs are better at learning Calabi–Yau metrics than fixed kernel methods, such as the Ricci flow.more » « less
-
We prove that all 3D steady gradient Ricci solitons are O(2)-symmetric. The O(2)-symmetry is the most universal symmetry in Ricci flows with any type of symmetries. Our theorem is also the first instance of symmetry theorem for Ricci flows that are not rotationally symmetric. We also show that the Bryant soliton is the unique 3D steady gradient Ricci soliton with positive curvature that is asymptotic to a ray.more » « less
-
null (Ed.)Abstract In a recent paper, Brendle showed the uniqueness of the Bryant soliton among 3-dimensional κ-solutions.In this paper, we present an alternative proof for this fact and show that compact κ-solutions are rotationally symmetric.Our proof arose from independent work relating to our Strong Stability Theorem for singular Ricci flows.more » « less
An official website of the United States government

