skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: LLAMA: The M BH – σ ⋆ relation of the most luminous local AGNs
Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion.  more » « less
Award ID(s):
1909297
NSF-PAR ID:
10171523
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
634
ISSN:
0004-6361
Page Range / eLocation ID:
A114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present 0.″22-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2−1) emission from the circumnuclear gas disk in the red nugget relic galaxy PGC 11179. The disk shows regular rotation, with projected velocities near the center of 400 km s−1. We assume the CO emission originates from a dynamically cold, thin disk and fit gas-dynamical models directly to the ALMA data. In addition, we explore systematic uncertainties by testing the impacts of various model assumptions on our results. The supermassive black hole (BH) mass (MBH) is measured to beMBH= (1.91 ± 0.04 [1σstatistical]0.51+0.11[systematic]) × 109M, and theH-band stellar mass-to-light ratioM/LH= 1.620 ± 0.004 [1σstatistical]0.107+0.211[systematic]M/L. ThisMBHis consistent with the BH mass−stellar velocity dispersion relation but over-massive compared to the BH mass−bulge luminosity relation by a factor of 3.7. PGC 11179 is part of a sample of local compact early-type galaxies that are plausible relics ofz∼ 2 red nuggets, and its behavior relative to the scaling relations echoes that of three relic galaxy BHs previously measured with stellar dynamics. These over-massive BHs could suggest that BHs gain most of their mass before their host galaxies do. However, our results could also be explained by greater intrinsic scatter at the high-mass end of the scaling relations, or by systematic differences in gas- and stellar-dynamical methods. AdditionalMBHmeasurements in the sample, including independent cross-checks between molecular gas- and stellar-dynamical methods, will advance our understanding of the co-evolution of BHs and their host galaxies.

     
    more » « less
  2. Abstract

    While it is generally believed that supermassive black holes (SMBHs) lie in most galaxies with bulges, few SMBHs have been confirmed in bulgeless galaxies. Identifying such a population could provide important insights to the BH seed population and secular BH growth. To this end, we obtained near-infrared (NIR) spectroscopic observations of a sample of low-redshift bulgeless galaxies with mid-infrared colors suggestive of active galactic nuclei (AGNs). We find additional evidence of AGN activity (such as coronal lines and broad permitted lines) in 69% (9/13) of the sample, demonstrating that mid-infrared selection is a powerful tool to detect AGNs. More than half of the galaxies with confirmed AGN activity show fast outflows in [Oiii] in the optical and/or [Sivi] in the NIR, with the latter generally having much faster velocities that are also correlated to their spatial extent. We are also able to obtain virial BH masses for some targets and find they fall within the scatter of other late-type galaxies in theMBHMstellarrelation. The fact that they lack a significant bulge component indicates that secular processes, likely independent of major mergers, grew these BHs to supermassive sizes. Finally, we analyze the rotational gas kinematics and find two notable exceptions: two AGN hosts with outflows that appear to be rotating faster than expected. There is an indication that these two galaxies have stellar masses significantly lower than expected from their dark matter halo masses. This, combined with the observed AGN activity and strong gas outflows, may be evidence of the effects of AGN feedback.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We report the identification of a low-mass active galactic nucleus (AGN), DES J0218−0430, in a redshift z = 0.823 galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218−0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 yr. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg ii and broad H β lines, confirming its nature as a broad-line AGN. Archival XMM–Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $L_{{\rm 2-12\, keV}}\approx 7.6\pm 0.4\times 10^{43}$ erg s−1, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H β from SDSS spectrum, we estimate a virial black hole (BH) mass of M• ≈ 106.43–106.72 M⊙ (with the error denoting the systematic uncertainty from different calibrations), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift > 0.4 detected in optical. We estimate the host galaxy stellar mass to be M* ≈ 1010.5 ± 0.3 M⊙ based on modelling the multiwavelength spectral energy distribution. DES J0218−0430 extends the M•–M* relation observed in luminous AGNs at z ∼ 1 to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory. 
    more » « less
  4. Abstract Recent studies have revealed a strong relation between the sample-averaged black hole (BH) accretion rate (BHAR) and star formation rate (SFR) among bulge-dominated galaxies—i.e., “lockstep” BH–bulge growth—in the distant universe. This relation might be closely connected to the BH–bulge mass correlation observed in the local universe. To further understand BH–bulge coevolution, we present Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) or CO(3–2) observations of seven star-forming bulge-dominated galaxies at z = 0.5–2.5. Using the ALMA data, we detect significant (>3 σ ) CO emission from four objects. For our sample of seven galaxies, we measure (or constrain with upper limits) their CO line fluxes and estimate their molecular gas masses ( M gas ). We also estimate their stellar masses ( M star ) and SFRs, by modeling their spectral energy distributions. Using these physical properties, we derive the gas depletion timescales ( τ dep ≡ M gas /SFR) and compare them with the bulge/BH growth timescales ( τ grow ≡ M star /SFR ∼ M BH /BHAR). Our sample generally has τ dep shorter than τ grow by a median factor of ≳4, indicating that the cold gas will be depleted before significant bulge/BH growth takes place. This result suggests that BH–bulge lockstep growth is mainly responsible for maintaining the mass relation, not creating it. We note that our sample is small and limited to z < 2.5; JWST and ALMA will be able to probe to higher redshifts in the near future. 
    more » « less
  5. ABSTRACT

    We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.

     
    more » « less