Many key-value stores and database systems use log-structured merge-trees (LSM-trees) as their storage engines because of their excellent write performance. However, the read performance of LSM-trees is suboptimal due to the overlapping sorted runs. Most existing efforts rely on filters to reduce unnecessary I/Os, but filters fundamentally do not help locate items and often become the bottleneck of the system. We identify that the lack of efficient index is the root cause of subpar read performance in LSM-trees. In this paper, we propose Disco: a compact index for LSM-trees. Disco indexes all the keys in an LSM-tree, so a query does not have to search every run of the LSM-tree. It records compact key representations to minimize the number of key comparisons so as to minimize cache misses and I/Os for both point and range queries. Disco guarantees that both point queries and seeks issue at most one I/O to the underlying runs, achieving an I/O efficiency close to a B+-tree. Disco improves upon REMIX's pioneering multi-run index design with additional compact key representations to help improve read performance. The representations are compact so the cost of persisting Disco to disk is small. Moreover, while a traditional LSM-tree has to choose a more aggressive compaction policy that slows down write performance to have better read performance, a Disco-indexed LSM-tree can employ a write-efficient policy and still have good read performance. Experimental results show that Disco can save I/Os and improve point and range query performance by up to 220% over RocksDB while maintaining efficient writes.
more »
« less
DirectLoad:A Fast Web-scaleIndexSystemacrossLargeRegionalCenters
The freshness of web page indices is the key to improving searching quality of search engines. In Baidu, the major search engine in China, we have developed DirectLoad, an index updating system for efficiently delivering the webscale indices to nationwide data centers. However, the web-scale index updating suffers from increasingly high data volumes during network transmission and inefficient I/O transactions due to slow disk operations. DirectLoad accelerates the index updating streams from two aspects: 1) DirectLoad effectively cuts down the overwhelmingly high volume of indices in transmission by removing the redundant data across versions, and mutates regular operations in a key-value storage system for successful accesses to the deduplicated datasets. 2) DirectLoad significantly improves the I/O efficiency by replacing the LSMTree with a memory-resident table (memtable) and appendingonly- files (AOFs) on disk. Specifically, the write amplification stemming from sorting operations on disk is eliminated, and a lazy garbage collection policy further improves the I/O performance at the software level. In addition, DirectLoad directly manipulates the SSD native interfaces to remove the write amplification at the hardware level. In practice, 63% updating bandwidth has been saved due to the deduplication, and the write throughput to SSDs is increased by 3x. The index updating cycle of our production workloads has been compressed from 15 days to 3 days after deploying DirectLoad. In this paper, we show the effectiveness and efficiency of an in-memory index updating system, which is disruptive to the framework in a conventional memory hierarchy. We hope that this work contributes a strong case study in the system research literature.
more »
« less
- Award ID(s):
- 1718450
- PAR ID:
- 10171706
- Date Published:
- Journal Name:
- 2019 IEEE 35th International Conference on Data Engineering (ICDE)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Key-value (KV) stores play an increasingly critical role in supporting diverse large-scale applications in modern data centers hosting terabytes of KV items which even might reside on a single server due to virtualization purpose. The combination of ever growing volume of KV items and storage/application consolidation is driving a trend of high storage density for KV stores. Shingled Magnetic Recording (SMR) represents a promising technology for increasing disk capacity, but it comes at a cost of poor random write performance and severe I/O amplification. Applications/software working with SMR devices need to be designed and optimized in an SMR-friendly manner. In this work, we present SEALDB, a Log-Structured Merge tree (LSM-tree) based key-value store that is specifically op- timized for and works well with SMR drives via adequately addressing the poor random writes and severe I/O amplification issues. First, for LSM-trees, SEALDB concatenates SSTables of each compaction, and groups them into sets. Taking sets as the basic unit for compactions, SEALDB improves compaction efficiency by mitigating random I/Os. Second, SEALDB creates varying size bands on HM-SMR drives, named dynamic bands. Dynamic bands not only accommodate the storage of sets, but also eliminate the auxiliary write amplification from SMR drives. We demonstrate the advantages of SEALDB via extensive experiments in various workloads. Overall, SEALDB delivers impressive performance improvement. Compared with LevelDB, SEALDB is 3.42× faster on random load due to improved compaction efficiency and eliminated auxiliary write amplification on SMR drives.more » « less
-
Byte-addressable non-volatile memory (NVM) is a promising technology that provides near-DRAM performance with scalable memory capacity. However, it requires atomic data durability to ensure memory persistency. Therefore, many techniques, including logging and shadow paging, have been proposed. However, most of them either introduce extra write traffic to NVM or suffer from significant performance overhead on the critical path of program execution, or even both. In this paper, we propose a transparent and efficient hardware-assisted out-of-place update (HOOP) mechanism that supports atomic data durability, without incurring much extra writes and performance overhead. The key idea is to write the updated data to a new place in NVM, while retaining the old data until the updated data becomes durable. To support this, we develop a lightweight indirection layer in the memory controller to enable efficient address translation and adaptive garbage collection for NVM. We evaluate HOOP with a variety of popular data structures and data-intensive applications, including key-value stores and databases. Our evaluation shows that HOOP achieves low critical-path latency with small write amplification, which is close to that of a native system without persistence support. Compared with state-of-the-art crash-consistency techniques, it improves application performance by up to 1.7×, while reducing the write amplification by up to 2.1×. HOOP also demonstrates scalable data recovery capability on multi-core systems.more » « less
-
Computer systems utilizing byte-addressable Non-Volatile Memory ( NVM ) as memory/storage can provide low-latency data persistence. The widely used key-value stores using Log-Structured Merge Tree ( LSM-Tree ) are still beneficial for NVM systems in aspects of the space and write efficiency. However, the significant write amplification introduced by the leveled compaction of LSM-Tree degrades the write performance of the key-value store and shortens the lifetime of the NVM devices. The existing studies propose new compaction methods to reduce write amplification. Unfortunately, they result in a relatively large read amplification. In this article, we propose NVLSM, a key-value store for NVM systems using LSM-Tree with new accumulative compaction. By fully utilizing the byte-addressability of NVM, accumulative compaction uses pointers to accumulate data into multiple floors in a logically sorted run to reduce the number of compactions required. We have also proposed a cascading searching scheme for reads among the multiple floors to reduce read amplification. Therefore, NVLSM reduces write amplification with small increases in read amplification. We compare NVLSM with key-value stores using LSM-Tree with two other compaction methods: leveled compaction and fragmented compaction. Our evaluations show that NVLSM reduces write amplification by up to 67% compared with LSM-Tree using leveled compaction without significantly increasing the read amplification. In write-intensive workloads, NVLSM reduces the average latency by 15.73%–41.2% compared to other key-value stores.more » « less
-
null (Ed.)The emergence of Intel's Optane DC persistent memory (Optane Pmem) draws much interest in building persistent key-value (KV) stores to take advantage of its high throughput and low latency. A major challenge in the efforts stems from the fact that Optane Pmem is essentially a hybrid storage device with two distinct properties. On one hand, it is a high-speed byte-addressable device similar to DRAM. On the other hand, the write to the Optane media is conducted at the unit of 256 bytes, much like a block storage device. Existing KV store designs for persistent memory do not take into account of the latter property, leading to high write amplification and constraining both write and read throughput. In the meantime, a direct re-use of a KV store design intended for block devices, such as LSM-based ones, would cause much higher read latency due to the former property. In this paper, we propose ChameleonDB, a KV store design specifically for this important hybrid memory/storage device by considering and exploiting these two properties in one design. It uses LSM tree structure to efficiently admit writes with low write amplification. It uses an in-DRAM hash table to bypass LSM-tree's multiple levels for fast reads. In the meantime, ChameleonDB may choose to opportunistically maintain the LSM multi-level structure in the background to achieve short recovery time after a system crash. ChameleonDB's hybrid structure is designed to be able to absorb sudden bursts of a write workload, which helps avoid long-tail read latency. Our experiment results show that ChameleonDB improves write throughput by 3.3× and reduces read latency by around 60% compared with a legacy LSM-tree based KV store design. ChameleonDB provides performance competitive even with KV stores using fully in-DRAM index by using much less DRAM space. Compared with CCEH, a persistent hash table design, ChameleonDB provides 6.4× higher write throughput.more » « less
An official website of the United States government

