skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Matchings in k ‐partite k ‐uniform hypergraphs
Abstract For and , let be a ‐partite ‐graph with parts each of size , where is sufficiently large. Assume that for each , every ‐set in lies in at least edges, and . We show that if , then contains a matching of size . In particular, contains a matching of size if each crossing ‐set lies in at least edges, or each crossing ‐set lies in at least edges and . This special case answers a question of Rödl and Ruciński and was independently obtained by Lu, Wang, and Yu. The proof of Lu, Wang, and Yu closely follows the approach of Han by using the absorbing method and considering an extremal case. In contrast, our result is more general and its proof is thus more involved: it uses a more complex absorbing method and deals with two extremal cases.  more » « less
Award ID(s):
1700622
PAR ID:
10171837
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Graph Theory
Volume:
95
Issue:
1
ISSN:
0364-9024
Page Range / eLocation ID:
p. 34-58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that the number of edges of a multigraph with vertices is at most , provided that any two edges cross at most once, parallel edges are noncrossing, and the lens enclosed by every pair of parallel edges in contains at least one vertex. As a consequence, we prove the following extension of the Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi, and Leighton, if has edges, in any drawing of with the above property, the number of crossings is . This answers a question of Kaufmann et al. and is tight up to the logarithmic factor. 
    more » « less
  2. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices. 
    more » « less
  3. We consider the problem of enumerating optimal solutions for two hypergraph k-partitioning problems, namely, Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. The input in hypergraph k-partitioning problems is a hypergraph [Formula: see text] with positive hyperedge costs along with a fixed positive integer k. The goal is to find a partition of V into k nonempty parts [Formula: see text]—known as a k-partition—so as to minimize an objective of interest. (1) If the objective of interest is the maximum cut value of the parts, then the problem is known as Minmax-Hypergraph-k-Partition. A subset of hyperedges is a minmax-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Minmax-Hypergraph-k-Partition. (2) If the objective of interest is the total cost of hyperedges crossing the k-partition, then the problem is known as Hypergraph-k-Cut. A subset of hyperedges is a min-k-cut-set if it is the subset of hyperedges crossing an optimum k-partition for Hypergraph-k-Cut. We give the first polynomial bound on the number of minmax-k-cut-sets and a polynomial-time algorithm to enumerate all of them in hypergraphs for every fixed k. Our technique is strong enough to also enable an [Formula: see text]-time deterministic algorithm to enumerate all min-k-cut-sets in hypergraphs, thus improving on the previously known [Formula: see text]-time deterministic algorithm, in which n is the number of vertices and p is the size of the hypergraph. The correctness analysis of our enumeration approach relies on a structural result that is a strong and unifying generalization of known structural results for Hypergraph-k-Cut and Minmax-Hypergraph-k-Partition. We believe that our structural result is likely to be of independent interest in the theory of hypergraphs (and graphs). Funding: All authors were supported by NSF AF 1814613 and 1907937. 
    more » « less
  4. Gyárfas proved that every coloring of the edges of $$K_n$$ with $t+1$ colors contains a monochromatic connected component of size at least $n/t$. Later, Gyárfás and Sárközy asked for which values of $$\gamma=\gamma(t)$$ does the following strengthening for almost complete graphs hold: if $$G$$ is an $$n$$-vertex graph with minimum degree at least $$(1-\gamma)n$$, then every $(t+1)$-edge coloring of $$G$$ contains a monochromatic component of size at least $n/t$. We show $$\gamma= 1/(6t^3)$$ suffices, improving a result of DeBiasio, Krueger, and Sárközy. 
    more » « less
  5. Abstract We show that for every integer and large , every properly edge‐colored graph on vertices with at least edges contains a rainbow subdivision of . This is sharp up to a polylogarithmic factor. Our proof method exploits the connection between the mixing time of random walks and expansion in graphs. 
    more » « less