2D van der Waals (vdW) materials are emerging as the next generation platform for optical and electronic devices with their wide coverage of the energy bandgaps. The strong light–matter interactions in 2D vdW layers allow for exploring novel optical and electronic phenomena such as 2D polaritons exhibiting ultrahigh field confinement, defects‐induced new quantum states, and strain‐modulated quantum confinement of 2D excitons. Far‐field optical imaging techniques are extensively used to characterize the 2D vdW materials so far, however, subdiffraction spatial resolution is required for comprehensive investigations of 2D vdW materials of which physical properties are greatly influenced by local defects and strain. This article aims to cover historical advances, fundamental principles, and distinct features of emerging near‐field optical imaging techniques: scattering‐type scanning near‐field optical microscopy, tip‐enhanced Raman spectroscopy, tip‐enhanced photoluminescence techniques, and photo‐induced force microscopy. The recent developments toward spectroscopic analysis of near‐field imaging and applications for unveiling unique properties of 2D polaritons, nanoscale defects, and mechanical strains in 2D vdW materials, are also discussed. This review article provides an understanding of emerging near‐field imaging techniques and suggests prospective applications for exploring 2D vdW materials.
- Award ID(s):
- 1809622
- PAR ID:
- 10171968
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 5
- Issue:
- 10
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaau8763
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract 2D materials‐based device performance is significantly affected by film non‐uniformity, especially for large area devices. Here, it investigates the dependence of large area 2D MoS2phototransistor performance on film morphology through correlative mapping. Monolayer MoS2films are quazi‐epitaxially synthesized on C‐plane sapphire (Al2O3) substrates by chemical vapor deposition, and the growth time and molybdenum trioxide MoO3precursor volume are varied to obtain variations in film morphology. Raman, photoluminescence, transmittance, and photocurrent maps are generated and compared with each other to obtain a holistic understanding of large area 2D optoelectronic device performance. For example, it shows that the photoluminescence peak shift and intensity can be used to investigate strain and other defects across multiple film morphologies, giving insight into their effects on the photogenerated current in these devices. It also combines photocurrent and absorption maps to generate large area high‐resolution external quantum efficiency and internal quantum efficiency maps for the devices. This study demonstrates the benefit of correlative mapping in the understanding and advancement of large area 2D material‐based electronic and optoelectronic devices.
-
Abstract Control of excitons in transition metal dichalcogenides (TMDCs) and their heterostructures is fundamentally interesting for tailoring light-matter interactions and exploring their potential applications in high-efficiency optoelectronic and nonlinear photonic devices. While both intra- and interlayer excitons in TMDCs have been heavily studied, their behavior in the quantum tunneling regime, in which the TMDC or its heterostructure is optically excited and concurrently serves as a tunnel junction barrier, remains unexplored. Here, using the degree of freedom of a metallic probe in an atomic force microscope, we investigated both intralayer and interlayer excitons dynamics in TMDC heterobilayers via locally controlled junction current in a finely tuned sub-nanometer tip-sample cavity. Our tip-enhanced photoluminescence measurements reveal a significantly different exciton-quantum plasmon coupling for intralayer and interlayer excitons due to different orientation of the dipoles of the respective
e -h pairs. Using a steady-state rate equation fit, we extracted field gradients, radiative and nonradiative relaxation rates for excitons in the quantum tunneling regime with and without junction current. Our results show that tip-induced radiative (nonradiative) relaxation of intralayer (interlayer) excitons becomes dominant in the quantum tunneling regime due to the Purcell effect. These findings have important implications for near-field probing of excitonic materials in the strong-coupling regime. -
The development of new characterization methods has resulted in innovative studies of the properties of two-dimensional (2D) materials. Observations of nanoscale heterogeneity with scanning probe microscopy methods have led to efforts to further understand these systems and observe new local phenomena by coupling light-based measurement methods into the tip-sample junction. Bringing optical spectroscopy into the near-field in ultrahigh vacuum at cryogenic temperatures has led to highly unique studies of molecules and materials, yielding new insight into otherwise unobservable properties nearing the atomic scale. Here, we discuss studies of 2D materials at the subnanoscale where the measurement method relies on the detection of visible light scattered or emitted from the scanning tunneling microscope (STM). We focus on tip-enhanced Raman spectroscopy, a subset of scattering-type scanning near-field optical microscopy, where incident light is confined and enhanced by a plasmonic STM tip. We also mention scanning tunneling microscope induced luminescence, where the STM tip is used as a highly local light source. The measurement of light-matter interactions within the atomic STM cavity is expected to continue to provide a useful platform to study new materials.more » « less
-
Abstract Innovation in microscopy has often been critical in advancing both fundamental science and technological progress. Notably, the evolution of ultrafast near-field optical nano-spectroscopy and nano-imaging has unlocked the ability to image at spatial scales from nanometers to ångströms and temporal scales from nanoseconds to femtoseconds. This approach revealed a plethora of fascinating light-matter states and quantum phenomena, including various species of polaritons, quantum phases, and complex many-body effects. This review focuses on the working principles and state-of-the-art development of ultrafast tip-enhanced and near-field microscopy, integrating diverse optical pump-probe methods across the terahertz (THz) to ultraviolet (UV) spectral ranges. It highlights their utility in examining a broad range of materials, including two-dimensional (2D), organic molecular, and hybrid materials. The review concludes with a spatio-spectral-temporal comparison of ultrafast nano-imaging techniques, both within already well-defined domains, and offering an outlook on future developments of ultrafast tip-based microscopy and their potential to address a wider range of materials.