skip to main content


Title: Dziban: Balancing Agency & Automation in Visualization Design via Anchored Recommendations
Visualization recommender systems attempt to automate design decisions spanning choices of selected data, transformations, and visual encodings. However, across invocations such recommenders may lack the context of prior results, producing unstable outputs that override earlier design choices. To better balance automated suggestions with user intent, we contribute Dziban, a visualization API that supports both ambiguous specification and a novel anchoring mechanism for conveying desired context. Dziban uses the Draco knowledge base to automatically complete partial specifications and suggest appropriate visualizations. In addition, it extends Draco with chart similarity logic, enabling recommendations that also remain perceptually similar to a provided “anchor” chart. Existing APIs for exploratory visualization, such as ggplot2 and Vega-Lite, require fully specified chart definitions. In contrast, Dziban provides a more concise and flexible authoring experience through automated design, while preserving predictability and control through anchored recommendations.  more » « less
Award ID(s):
1907399
NSF-PAR ID:
10172010
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There exists a gap between visualization design guidelines and their application in visualization tools. While empirical studies can provide design guidance, we lack a formal framework for representing design knowledge, integrating results across studies, and applying this knowledge in automated design tools that promote effective encodings and facilitate visual exploration. We propose modeling visualization design knowledge as a collection of constraints, in conjunction with a method to learn weights for soft constraints from experimental data. Using constraints, we can take theoretical design knowledge and express it in a concrete, extensible, and testable form: the resulting models can recommend visualization designs and can easily be augmented with additional constraints or updated weights. We implement our approach in Draco, a constraint-based system based on Answer Set Programming (ASP). We demonstrate how to construct increasingly sophisticated automated visualization design systems, including systems based on weights learned directly from the results of graphical perception experiments. 
    more » « less
  2. There exists a gap between visualization design guidelines and their application in visualization tools. While empirical studies can provide design guidance, we lack a formal framework for representing design knowledge, integrating results across studies, and applying this knowledge in automated design tools that promote effective encodings and facilitate visual exploration. We propose modeling visualization design knowledge as a collection of constraints, in conjunction with a method to learn weights for soft constraints from experimental data. Using constraints, we can take theoretical design knowledge and express it in a concrete, extensible, and testable form: the resulting models can recommend visualization designs and can easily be augmented with additional constraints or updated weights. We implement our approach in Draco, a constraint-based system based on Answer Set Programming (ASP). We demonstrate how to construct increasingly sophisticated automated visualization design systems, including systems based on weights learned directly from the results of graphical perception experiments. 
    more » « less
  3. Background/Context:

    Computer programming is rarely accessible to K–12 students, especially for those from culturally and linguistically diverse backgrounds. Middle school age is a transitioning time when adolescents are more likely to make long-term decisions regarding their academic choices and interests. Having access to productive and positive knowledge and experiences in computer programming can grant them opportunities to realize their abilities and potential in this field.

    Purpose/Focus of Study:

    This study focuses on the exploration of the kind of relationship that bilingual Latinx students developed with themselves and computer programming and mathematics (CPM) practices through their participation in a CPM after-school program, first as students and then as cofacilitators teaching CPM practices to other middle school peers.

    Setting:

    An after-school program, Advancing Out-of-School Learning in Mathematics and Engineering (AOLME), was held at two middle schools located in rural and urban areas in the Southwest. It was designed to support an inclusive cultural environment that nurtured students’ opportunities to learn CPM practices through the inclusion of languages (Spanish and English), tasks, and participants congruent to students in the program. Students learned how to represent, design, and program digital images and videos using a sequence of 2D arrays of hexadecimal numbers with Python on a Raspberry Pi computer. The six bilingual cofacilitators attended Levels 1 and 2 as students and were offered the opportunity to participate as cofacilitators in the next implementation of Level 1.

    Research Design:

    This longitudinal case study focused on analyzing the experiences and shifts (if any) of students who participated as cofacilitators in AOLME. Their narratives were analyzed collectively, and our analysis describes the experiences of the cofacilitators as a single case study (with embedded units) of what it means to be a bilingual cofacilitator in AOLME. Data included individual exit interviews of the six cofacilitators and their focus groups (30–45 minutes each), an adapted 20-item CPM attitude 5-point Likert scale, and self-report from each of them. Results from attitude scales revealed cofacilitators’ greater initial and posterior connections to CPM practices. The self-reports on CPM included two number lines (0–10) for before and after AOLME for students to self-assess their liking and knowledge of CPM. The numbers were used as interview prompts to converse with students about experiences. The interview data were analyzed qualitatively and coded through a contrast-comparative process regarding students’ description of themselves, their experiences in the program, and their perception of and relationship toward CPM practices.

    Findings:

    Findings indicated that students had continued/increased motivation and confidence in CPM as they engaged in a journey as cofacilitators, described through two thematic categories: (a) shifting views by personally connecting to CPM, and (b) affirming CPM practices through teaching. The shift in connecting to CPM practices evolved as students argued that they found a new way of learning mathematics, in that they used mathematics as a tool to create videos and images that they programmed by using Python while making sense of the process bilingually (Spanish and English). This mathematics was viewed by students as high level, which in turned helped students gain self-confidence in CPM practices. Additionally, students affirmed their knowledge and confidence in CPM practices by teaching them to others, a process in which they had to mediate beyond the understanding of CPM practices. They came up with new ways of explaining CPM practices bilingually to their peers. In this new role, cofacilitators considered the topic and language, and promoted a communal support among the peers they worked with.

    Conclusions/Recommendations:

    Bilingual middle school students can not only program, but also teach bilingually and embrace new roles with nurturing support. Schools can promote new student roles, which can yield new goals and identities. There is a great need to redesign the school mathematics curriculum as a discipline that teenagers can use and connect with by creating and finding things they care about. In this way, school mathematics can support a closer “fit” with students’ identification with the world of mathematics. Cofacilitators learned more about CPM practices by teaching them, extending beyond what was given to them, and constructing new goals that were in line with a sophisticated knowledge and shifts in the practice. Assigned responsibility in a new role can strengthen students’ self-image, agency, and ways of relating to mathematics.

     
    more » « less
  4. Abstract

    Graph databases capture richly linked domain knowledge by integrating heterogeneous data and metadata into a unified representation. Here, we present the use of bespoke, interactive data graphics (bar charts, scatter plots, etc.) for visual exploration of a knowledge graph. By modeling a chart as a set of metadata that describes semantic context (SPARQL query) separately from visual context (Vega-Lite specification), we leverage the high-level, declarative nature of the SPARQL and Vega-Lite grammars to concisely specify web-based, interactive data graphics synchronized to a knowledge graph. Resources with dereferenceable URIs (uniform resource identifiers) can employ the hyperlink encoding channel or image marks in Vega-Lite to amplify the information content of a given data graphic, and published charts populate a browsable gallery of the database. We discuss design considerations that arise in relation to portability, persistence, and performance. Altogether, this pairing of SPARQL and Vega-Lite—demonstrated here in the domain of polymer nanocomposite materials science—offers an extensible approach to FAIR (findable, accessible, interoperable, reusable) scientific data visualization within a knowledge graph framework.

     
    more » « less
  5. SQL is a crucial language for managing relational database systems, and is an essential skill for individuals in roles such as researchers, developers, and business professionals who work with databases. However, learning SQL can be a challenge, presenting an opportunity to study the various methods students use to arrive at semantically equivalent SQL queries. In this study, we examined students’ SQL submissions to homework assignments in the Database Systems course offered to upper-level undergraduate and graduate students at the University of Illinois Urbana-Champaign during the Fall 2022 semester. Our goal was to understand how students arrive at SQL solutions and overcome challenges in the learning process by building on prior research on line chart visualizations that instructors can use to increase visibility on students who are struggling. However, a major limitation of this approach was the difficulty for instructors to sift through a large number of visuals representing each student’s performance on a SQL problem and generate action items at scale, especially when dealing with enrollments of over 700 students. To overcome this limitation, we developed a novel technique to generate textual representations of the student submission sequence using global sequence alignment scores and regular expression algorithms to further compact these submission sequences. This allows instructors to gain insights quickly, on an aggregate level, and in an automated manner, enabling them to identify students who may be struggling with SQL based on their submission sequence characteristics and take appropriate action to improve database education. Our study discovered common textual submission patterns and pattern elements, and we present our recommendations to instructors to improve database education based on these findings. 
    more » « less