skip to main content


Title: Decoupled LIGHT-SABRE variants allow hyperpolarization of asymmetric SABRE systems at an arbitrary field
Award ID(s):
1665090
NSF-PAR ID:
10172190
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Magnetic Resonance
Volume:
307
Issue:
C
ISSN:
1090-7807
Page Range / eLocation ID:
106577
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here we report on chelating ligands for Signal Amplification By Reversible Exchange (SABRE) catalysts that permit hyperpolarisation on otherwise sterically hindered substrates. We demonstrate 1 H enhancements of ∼100-fold over 8.5 T thermal for 2-substituted pyridines, and smaller, yet significant enhancements for provitamin B 6 and caffeine. We also show 15 N-enhancements of ∼1000-fold and 19 F-enhancements of 30-fold. 
    more » « less
  2. 15 N spin–lattice relaxation dynamics in metronidazole- 15 N 3 and metronidazole- 15 N 2 isotopologues are studied for rational design of 15 N-enriched biomolecules for signal amplification by reversible exchange in microtesla fields. 15 N relaxation dynamics mapping reveals the deleterious effects of interactions with the polarization transfer catalyst and a quadrupolar 14 N nucleus within the spin-relayed 15 N– 15 N network. 
    more » « less
  3. SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to hyperpolarize a wide variety of molecules in solution, and have been demonstrated with protons and, more recently, with heteronuclei (X-SABRE). Here, we present several oscillating pulse sequences that use magnetic fields far away from the resonance condition of continuous excitation and can commonly triple the polarization. An analysis with average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between hydrides and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment, combined with simulations and experiment, shows substantial magnetization improvements relative to traditional X-SABRE methods. It also shows that, in contrast to most pulse sequence applications, waveforms with reduced time symmetry in the toggling frame make magnetization generation more robust to experimental imperfections. 
    more » « less
  4. New pulse sequences yield improved polarization for SABRE experiments and reframe our theoretical understanding of the dynamics. 
    more » « less