skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1665090

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diazirine moieties are chemically stable and have been incorporated into biomolecules without impediment of biological activity. The15N2labeled diazirines are appealing motifs for hyperpolarization supporting relaxation protected states with long‐lived lifetimes. The (‐CH15N2) diazirine groups investigated here are analogues to methyl groups, which provides the opportunity to transfer polarization stored on a relaxation protected (‐CH15N2) moiety to1H, thus combining the advantages of long lifetimes of15N polarization with superior sensitivity of1H detection. Despite the proximity of1H to15N nuclei in the diazirine moiety,15NT1times of up to (4.6±0.4) min and singlet lifetimesTsof up to (17.5±3.8) min are observed. Furthermore, we found terminal diazirines to support hyperpolarized1H2singlet states in CH2groups of chiral molecules. The singlet lifetime of1H singlets is up to (9.2±1.8) min, thus exceeding1HT1relaxation time (at 8.45 T) by a factor of ≈100. 
    more » « less
  2. Abstract Herein, we demonstrate “direct”13C hyperpolarization of13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism. 
    more » « less
  3. Azide moieties, unique linear species containing three nitrogen atoms, represent an attractive class of molecular tag for hyperpolarized magnetic resonance imaging (HP-MRI). Here we demonstrate ( 15 N) 3 -azide-containing molecules exhibit long-lasting hyperpolarization lifetimes up to 9.8 min at 1 T with remarkably high polarization levels up to 11.6% in water, thus establishing ( 15 N) 3 -azide as a powerful spin storage for hyperpolarization. A single ( 15 N)-labeled azide has also been examined as an effective alternative tag with long-lived hyperpolarization. A variety of biologically important molecules are studied in this work, including choline, glucose, amino acid, and drug derivatives, demonstrating great potential of 15 N-labeled azides as universal hyperpolarized tags for nuclear magnetic resonance imaging applications. 
    more » « less
  4. Here we report on chelating ligands for Signal Amplification By Reversible Exchange (SABRE) catalysts that permit hyperpolarisation on otherwise sterically hindered substrates. We demonstrate 1 H enhancements of ∼100-fold over 8.5 T thermal for 2-substituted pyridines, and smaller, yet significant enhancements for provitamin B 6 and caffeine. We also show 15 N-enhancements of ∼1000-fold and 19 F-enhancements of 30-fold. 
    more » « less