Abstract Consider the algebraic function $$\Phi _{g,n}$$ that assigns to a general $$g$$ -dimensional abelian variety an $$n$$ -torsion point. A question first posed by Klein asks: What is the minimal $$d$$ such that, after a rational change of variables, the function $$\Phi _{g,n}$$ can be written as an algebraic function of $$d$$ variables? Using techniques from the deformation theory of $$p$$ -divisible groups and finite flat group schemes, we answer this question by computing the essential dimension and $$p$$ -dimension of congruence covers of the moduli space of principally polarized abelian varieties. We apply this result to compute the essential $$p$$ -dimension of congruence covers of the moduli space of genus $$g$$ curves, as well as its hyperelliptic locus, and of certain locally symmetric varieties. These results include cases where the locally symmetric variety $$M$$ is proper . As far as we know, these are the first examples of nontrivial lower bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic variety.
more »
« less
Factorization problems in complex reflection groups
We enumerate factorizations of a Coxeter element into arbitrary factors in the complex reflection groups G(d, 1, n) (the wreath product of the symmetric group with a cyclic group) and its subgroup G(d, d, n), applying combinatorial and algebraic methods, respectively. After a change of basis, the coefficients that appear are the same as those that appear in the corresponding enumeration in the symmetric group.
more »
« less
- Award ID(s):
- 1855536
- PAR ID:
- 10172347
- Date Published:
- Journal Name:
- Séminaire lotharingien de combinatoire
- Issue:
- 82B
- ISSN:
- 1286-4889
- Page Range / eLocation ID:
- #57
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a representation of a finite group G over some commutative base ring k, the cofixed space is the largest quotient of the representation on which the group acts trivially. If G acts by k-algebra automorphisms, then the cofixed space is a module over the ring of G-invariants. When the order of G is not invertible in the base ring, little is known about this module structure. We study the cofixed space in the case that G is the symmetric group on n letters acting on a polynomial ring by permuting its variables. When k has characteristic 0, the cofixed space is isomorphic to an ideal of the ring of symmetric polynomials in n variables. Localizing k at a prime integer p while letting n vary reveals striking behavior in these ideals. As n grows, the ideals stay stable in a sense, then jump in complexity each time n reaches a multiple of p.more » « less
-
null (Ed.)Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d .more » « less
-
Abstract We study the number of ways of factoring elements in the complex reflection groups $G(r,s,n)$ as products of reflections. We prove a result that compares factorization numbers in $G(r,s,n)$ to those in the symmetric group $$S_n$$ , and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in $G(r,s,n)$ .more » « less
-
We prove a number of results to the effect that generic quantum graphs (defined via operator systems as in the work of Duan-Severini-Winter / Weaver) have few symmetries: for a Zariski-dense open set of tuples ( X 1 , ⋯ , X d ) (X_1,\cdots ,X_d) of traceless self-adjoint operators in the n × n n\times n matrix algebra the corresponding operator system has trivial automorphism group, in the largest possible range for the parameters: 2 ≤ d ≤ n 2 − 3 2\le d\le n^2-3 . Moreover, the automorphism group is generically abelian in the larger parameter range 1 ≤ d ≤ n 2 − 2 1\le d\le n^2-2 . This then implies that for those respective parameters the corresponding random-quantum-graph model built on the GUE ensembles of X i X_i ’s (mimicking the Erdős-Rényi G ( n , p ) G(n,p) model) has trivial/abelian automorphism group almost surely.more » « less
An official website of the United States government

