Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.
more »
« less
Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT: Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT
Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47 isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owater in isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.
more »
« less
- PAR ID:
- 10172358
- Date Published:
- Journal Name:
- Geobiology
- ISSN:
- 1472-4677
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δiis a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δivalues measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δivalues that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies.more » « less
-
Cave carbonate minerals are an important terrestrial paleoclimate archive. A few studies have explored the potential for applying carbonate clumped isotope thermometry to speleothems as a tool for constraining past temperatures. To date, most papers utilizing this method have focused on mass-47 clumped isotope values (Δ47) at a single location and reported that cave carbonate minerals rarely achieve isotopic equilibrium, with kinetic isotope effects (KIEs) attributed to CO2 degassing. More recently, studies have shown that mass-47 and mass-48 CO2 from acid digested carbonate minerals (Δ47 and Δ48) can be used together to assess equilibrium and probe KIEs. Here, we examined 44 natural and synthetic modern cave carbonate mineral samples from 13 localities with varying environmental conditions (ventilation, water level, pCO2, temperature) for (dis)equilibrium using Δ47-Δ48 values, in concert with traditional stable carbon (δ13C) and oxygen (δ18O) isotope ratios. Data showed that 19 of 44 samples exhibited Δ47-Δ48 values indistinguishable from isotopic equilibrium, and 18 (95 %) of these samples yield Δ47-predicted temperatures within error of measured modern temperatures. Conversely, 25 samples exhibited isotopic disequilibria, 13 of which yield erroneous temperature estimates. Within some speleothemsamples, we find Δ47-Δ48 values consistent with CO2 degassing effects, however, the majority of sampleswith KIEs are consistent with other processes being dominant. We hypothesize that these values reflect isotopicbuffering effects on clumped isotopes that can be considerable and cannot be overlooked. Using a Raleigh Distillation Model, we examined carbon and oxygen isotope exchange trajectories and their relationships with dual clumped isotope disequilibria. Carbon isotope exchange is associated with depletion of both Δ47 and Δ48 relative to equilibrium, while oxygen isotope exchange is associated with enrichment of both Δ47 and Δ48 relative to equilibrium. Cave rafts collected from proximate locations in Mexico exhibit the largest averagedepartures from equilibrium (ΔΔ47 = − 0.032 ± 0.007, ΔΔ48 = − 0.104 ± 0.035, where ΔΔi is the measured value – the equilibrium value). This study shows how the Δ47-Δ48 dual carbonate clumped isotope framework can be applied to a variety of tcave carbonate mineral samples, enabling identification of isotopic equilibria and therefore quantitative application of clumped isotope thermometry for paleoclimate reconstruction, or alternatively, constraining the mechanisms of kinetic effects.more » « less
-
Stalagmites are an important archive of terrestrial climate information. However, there remains questions about the ability of stalagmites to form in oxygen isotopic equilibrium and thus record, in a simple manner, the oxygen isotopic composition and temperature of formational fluids. Recent studies have suggested that the combined application of 48 and 47 carbonate clumped isotope measurements can quantify the extent of kinetic isotope fractionation in stalagmites and thus used to correct for these kinetic isotope effects and solve for the original formation temperatures. Here we measure the 47 and 48 values from 16 different samples of the same stalagmite from central California that spans the deglaciation (11 to 20 kya). Each sample is replicated three to five times. We find that based on these measurements the extent of kinetic fractionation present in the carbonate from this stalagmite is minimal. The temperature calculated from 47 in this stalagmite ranges from 11.6 to 19.9 °C, in agreement with regional reconstructions of temperatures from 47 values of lake carbonates. In contrast, previously published the 18O and 2H values of inclusion fluids (Wortham et al., 2022) from this stalagmite suggest periods of increasing kinetic fractionation of the water isotopes at 13 and 15 ka. These periods have been previously interpreted to be times of a reduction in effective moisture regionally. We suggest by this comparison that the use of both water isotopes and the dual clumped isotope system in stalagmites can aide the interpretation of where kinetic fractionation occurs in the hydrologic and carbonate precipitation system in caves. We will discuss the work’s implications for paleoclimate records from stalagmites and other terrestrial systems in seasonally dry and Mediterranean regions.more » « less
-
Gottstein, Sanja (Ed.)Great Salt Lake hosts an ecosystem that is critical to migratory birds and international aquaculture, yet it is currently threatened by falling lake elevation and high lakewater salinity resulting from water diversions in the upstream watershed and the enduring megadrought in the western United States. Microbialite reefs underpin the ecosystem, hosting a surface microbial community that is estimated to contribute 30% of the lake’s primary productivity. We monitored exposure, desiccation, and bleaching over time in an area of microbialite reef. During this period, lake elevation fell by 1.8 m, and salinity increased from 11.0% to 19.5% in open-water portions of the outer reef, reaching halite saturation in hydrologically closed regions. When exposed, microbialite bleaching was rapid. Bleached microbialites are not necessarily dead, however, with communities and chlorophyll persisting beneath microbialite surfaces for several months of exposure and desiccation. However, superficial losses in the mat community resulted in enhanced microbialite weathering. In microbialite recovery experiments with bleached microbialite pieces, partial community recovery was rapid at salinities ≤ 17%. 16S and 18S rRNA gene sequencing indicated that recovery was driven by initial seeding from lakewater. At higher salinity levels, eventual accumulation of chlorophyll may reflect accumulation and preservation of lake material in halite crusts vs. true recovery. Our results indicate that increased water input should be prioritized in order to return the lake to an elevation that submerges microbialite reefs and lowers salinity levels. Without quick action to reverse diversions in the watershed, loss of pelagic microbial community members due to sustained high salinity could prevent the recovery of the ecosystem-critical microbialite surface communities in Great Salt Lake.more » « less
An official website of the United States government

