skip to main content

Title: Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT: Carbonate facies-specific stable isotope data record climate, hydrology, and microbial communities in Great Salt Lake, UT
Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas more » microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47 isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owater in isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation. « less
Authors:
; ; ;
Award ID(s):
1826850 1826869
Publication Date:
NSF-PAR ID:
10172358
Journal Name:
Geobiology
ISSN:
1472-4677
Sponsoring Org:
National Science Foundation
More Like this
  1. Cambrian–Devonian sedimentary rocks of the northern Canadian Cordillera record both the establishment and demise of the Great American Carbonate Bank, a widespread carbonate platform system that fringed the ancestral continental margins of North America (Laurentia). Here, we present a new examination of the deep-water Road River Group of the Richardson Mountains, Yukon, Canada, which was deposited in an intra-platformal embayment or seaway within the Great American Carbonate Bank called the Richardson trough. Eleven detailed stratigraphic sections through the Road River Group along the upper canyon of the Peel River are compiled and integrated with geological mapping, facies analysis, carbonate and organic carbon isotope chemostratigraphy, and new biostratigraphic results to formalize four new formations within the type area of the Richardson Mountains (Cronin, Mount Hare, Tetlit, and Vittrekwa). We recognize nine mixed carbonate and siliciclastic deep-water facies associations in the Road River Group and propose these strata were deposited in basin-floor to slope environments. New biostratigraphic data suggest the Road River Group spans the late Cambrian (Furongian) – Middle Devonian (Eifelian), and new chemostratigraphic data record multiple global carbon isotopic events, including the late Cambrian Steptoean positive carbon isotope excursion, the Late Ordovician Guttenberg excursion, the Silurian Aeronian, Valgu, Mulde (mid-Homerian),more »Ireviken (early Sheinwoodian), and Lau excursions, and the Early Devonian Klonk excursion. Together, these new data not only help clarify nomenclatural debate centered around the Road River Group, but also provide critical new sedimentological, biostratigraphic, and isotopic data for these widely distributed rocks of the northern Canadian Cordillera.« less
  2. The δ18O of carbonate minerals that formed at Earth’s surface is widely used to investigate paleoclimates and paleo-elevations. However, a multitude of hydrologic processes can affect δ18O values, including mixing, evaporation, distillation of parent waters, and carbonate growth temperatures. We combined traditional carbon and oxygen isotope analyses with clumped (Δ47) and triple oxygen isotopes (Δ′17O) analyses in oyster shells (Acutostrea idriaensis) of the Goler Formation in southern California (USA) to obtain insights into surface temperatures and δ18O values of meteoric waters during the early Eocene hothouse climate. The Δ47-derived temperatures ranged from 9 °C to 20 °C. We found a correlation between the δ18O of growth water (δ18Ogw) (calculated using Δ47 temperatures and δ18O of carbonate) and the δ13C values of shells. The Δ′17O values of shell growth waters (0.006‰–0.013‰ relative to Vienna standard mean ocean water–standard light Antarctic precipitation [VSMOW-SLAP]) calculated from Δ′17O of carbonate (–0.087‰ to –0.078‰ VSMOW-SLAP) were lower than typical meteoric waters. These isotopic compositions are consistent with oyster habitation in an estuary. We present a new triple oxygen isotope mixing model to estimate the δ18O value of freshwater supplying the estuary (δ18Ofw). The reconstructed δ18Ofw of –11.3‰ to –14.7‰ (VSMOW) is significantly lower than themore »δ18Ogw of –4.4‰ to –9.9‰ that would have been calculated using “only” Δ47 and δ18O values of carbonate. This δ18Ofw estimate supports paleogeographic reconstructions of a Paleogene river fed by high-elevation catchments of the paleo–southern Sierra Nevada. Our study highlights the potential for paired Δ47 and Δ′17O analyses to improve reconstructions of meteoric water δ18O, with implications for understanding ancient climates and elevations.« less
  3. Stable isotope analysis of bone and dental collagen is one of the most common methods to investigate the ecology of modern and extinct human and animal populations. However, since bone and dentine are composite materials with both organic and mineral components, the mineral component must be removed prior to analysis. In this study we investigated the timing and efficacy of mineral removal from bone and dentine. We performed a series of time-step experiments that show that mineral removal can be quantified over short periods of time using Fourier Transform Infrared Spectroscopy (FTIR), and collagen alteration can be tracked using a combination of stable isotope analysis and elemental analysis. We tested our methods on three modern materials: mammalian bone, mammalian dentine, and shark dentine. Our results show: 1) mineral removal is a necessary step, as structural carbonate has a strong influence on stable isotope compositions; 2) demineralization using weak acid (0.1M HCL) does not appear to alter the elemental and isotopic compositions of collagen. Our methods can be used as a framework to evaluate the need-for and efficacy of other demineralization methods in use today including EDTA-demineralization and lipid removal.
  4. ABSTRACT The radiocarbon ( 14 C) content of simultaneously deposited substrates in lacustrine archives may differ due to reservoir and detrital effects, complicating the development of age models and interpretation of proxy records. Multi-substrate 14 C studies quantifying these effects remain rare, however, particularly for large, terminal lake systems, which are excellent recorders of regional hydroclimate change. We report 14 C ages of carbonates, brine shrimp cysts, algal mat biomass, total organic carbon (TOC), terrestrial macrofossils, and n -alkane biomarkers from Holocene sediments of the Great Salt Lake (GSL), Utah. 14 C ages for co-deposited aquatic organic substrates are generally consistent, with small offsets that may reflect variable terrestrial organic matter inputs to the system. Carbonates and long-chain n -alkanes derived from vascular plants, however, are ∼1000–4000 14 C years older than other substrates, reflecting deposition of pre-aged detrital materials. All lacustrine substrates are 14 C-depleted compared to terrestrial macrofossils, suggesting that the reservoir age of the GSL was > 1200 years throughout most of the Holocene, far greater than the modern reservoir age of the lake (∼300 years). These results suggest good potential for multi-substrate paleoenvironmental reconstruction from Holocene GSL sediments but point to limitations including reservoir-induced uncertainty inmore »14 C chronologies and attenuation and time-shifting of some proxy signals due to detrital effects.« less
  5. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar/39Ar ages from the middle and top of the Blue Rimmore »escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.« less