skip to main content


Title: High-Resolution Observations of a Destructive Macroburst
Abstract Shortly after 0600 UTC (midnight MDT) on 9 June 2020, a rapidly intensifying and elongating convective system produced a macroburst and extensive damage in the town of Akron on Colorado’s eastern Plains. Instantaneous winds were measured as high as 51.12 m s −1 at 2.3 m AGL from an eddy covariance (EC) tower, and a 50.45 m s −1 wind gust from an adjacent 10-m tower became the highest official thunderstorm wind gust ever measured in Colorado. Synoptic-scale storm motion was southerly, but surface winds were northerly in a post-frontal airmass, creating strong vertical wind shear. Extremely high-resolution temporal and spatial observations allow for a unique look at pressure and temperature tendencies accompanying the macroburst and reveal intriguing wave structures in the outflow. At 10-Hz frequency, the EC tower recorded a 5-hPa pressure surge in 19 seconds immediately following the strongest winds, and a 15-hPa pressure drop in the following three minutes. Surface temperature also rose 1.5°C in less than one minute, concurrent with the maximum wind gusts, and then fell sharply by 3.5°C in the following minute. Shifting wind direction observations and an NWS damage survey are suggestive of both radial outflow and a gust front passage, and model proximity soundings reveal a well-mixed surface layer topped by a strong inversion and large low-level vertical wind shear. Despite the greatest risk of severe winds forecast to be northeast of Colorado, convection-allowing model forecasts from 6-18 h in advance did show similar structures to what occurred, warranting further simulations to investigate the unique mesoscale and misoscale features associated with the macroburst.  more » « less
Award ID(s):
1636663
NSF-PAR ID:
10317336
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Weather Review
ISSN:
0027-0644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shortly after 0600 UTC (midnight local time) 9 June 2020, a convective line produced severe winds across parts of northeast Colorado that caused extensive damage, especially in the town of Akron. High-resolution observations showed gusts exceeding 50 m s−1, accompanied by extremely large pressure fluctuations, including a 5-hPa pressure surge in 19 s immediately following the strongest winds and a 15-hPa pressure drop in the following 3 min. Numerical simulations of this event (using the WRF Model) and with horizontally homogeneous initial conditions (using Cloud Model 1) reveal that the severe winds in this event were associated with gravity wave dynamics. In a very stable postfrontal environment, elevated convection initiated and led to a long-lived gravity wave. Strong low-level vertical wind shear supported the amplification and eventual breaking of this wave, resulting in at least two sequential strong downbursts. This wave-breaking mechanism is different from the usual downburst mechanism associated with negative buoyancy resulting from latent cooling. The model output reproduces key features of the high-resolution observations, including similar convective structures, large temperature and pressure fluctuations, and intense near-surface wind speeds. The findings of this study reveal a series of previously unexplored mesoscale and storm-scale processes that can result in destructive winds.

    Significance Statement

    Downbursts of intense wind can produce significant damage, as was the case on 9 June 2020 in Akron, Colorado. Past research on downbursts has shown that they occur when raindrops, graupel, and hail in thunderstorms evaporate and melt, cooling the air and causing it to sink rapidly. In this research, we used numerical models of the atmosphere, along with high-resolution observations, to show that the Akron downburst was different. Unlike typical lines of thunderstorms, those responsible for the Akron macroburst produced a wave in the atmosphere, which broke, resulting in rapidly sinking air and severe surface winds.

     
    more » « less
  2. Shortly after 0600 UTC (midnight local time) 9 June 2020, a convective line produced severe winds across parts of northeast Colorado that caused extensive damage, especially in the town of Akron. High-resolution observations showed gusts exceeding 50 m s−1, accompanied by extremely large pressure fluctuations, including a 5-hPa pressure surge in 19 s immediately following the strongest winds and a 15-hPa pressure drop in the following 3 min. Numerical simulations of this event (using the WRF Model) and with horizontally homogeneous initial conditions (using Cloud Model 1) reveal that the severe winds in this event were associated with gravity wave dynamics. In a very stable postfrontal environment, elevated convection initiated and led to a long-lived gravity wave. Strong low-level vertical wind shear supported the amplification and eventual breaking of this wave, resulting in at least two sequential strong downbursts. This wave-breaking mechanism is different from the usual downburst mechanism associated with negative buoyancy resulting from latent cooling. The model output reproduces key features of the high-resolution observations, including similar convective structures, large temperature and pressure fluctuations, and intense near-surface wind speeds. The findings of this study reveal a series of previously unexplored mesoscale and storm-scale processes that can result in destructive winds. Significance Statement Downbursts of intense wind can produce significant damage, as was the case on 9 June 2020 in Akron, Colorado. Past research on downbursts has shown that they occur when raindrops, graupel, and hail in thunderstorms evaporate and melt, cooling the air and causing it to sink rapidly. In this research, we used numerical models of the atmosphere, along with high-resolution observations, to show that the Akron downburst was different. Unlike typical lines of thunderstorms, those responsible for the Akron macroburst produced a wave in the atmosphere, which broke, resulting in rapidly sinking air and severe surface winds. 
    more » « less
  3. Abstract

    Tropical cyclone (TC) structure and intensity are strongly modulated by interactions with deep-layer vertical wind shear (VWS)—the vector difference between horizontal winds at 200 and 850 hPa. This paper presents a comprehensive review of more than a century of research on TC–VWS interactions. The literature broadly agrees that a TC vortex becomes vertically tilted, precipitation organizes into a wavenumber-1 asymmetric pattern, and thermal and kinematic asymmetries emerge when a TC encounters an environmental sheared flow. However, these responses depend on other factors, including the magnitude and direction of horizontal winds at other vertical levels between 200 and 850 hPa, the amount and location of dry environmental air, and the underlying sea surface temperature. While early studies investigated how VWS weakens TCs, an emerging line of research has focused on understanding how TCs intensify under moderate and strong VWS (i.e., shear magnitudes greater than 5 m s−1). Modeling and observational studies have identified four pathways to intensification: vortex tilt reduction, vortex reformation, axisymmetrization of precipitation, and outflow blocking. These pathways may not be uniquely different because convection and vortex asymmetries are strongly coupled to each other. In addition to discussing these topics, this review presents open questions and recommendations for future research on TC–VWS interactions.

     
    more » « less
  4. Abstract

    Nested idealized baroclinic wave simulations at 4-km and 800-m grid spacing are used to analyze the precipitation structures and their evolution in the comma head of a developing extratropical cyclone. After the cyclone spins up by hour 120, snow multibands develop within a wedge-shaped region east of the near-surface low center within a region of 700–500-hPa potential and conditional instability. The cells deepen and elongate northeastward as they propagate north. There is also an increase in 600–500-hPa southwesterly vertical wind shear prior to band development. The system stops producing bands 12 h later as the differential moisture advection weakens, and the instability is depleted by the convection. Sensitivity experiments are run in which the initial stability and horizontal temperature gradient of the baroclinic wave are adjusted by 5%–10%. A 10% decrease in initial instability results in less than half the control run potential instability by 120 h and the cyclone fails to produce multibands. Meanwhile, a 5% decrease in instability delays the development of multibands by 18 h. Meanwhile, decreasing the initial horizontal temperature gradient by 10% delays the growth of vertical shear and instability, corresponding to multibands developing 12–18 h later. Conversely, increasing the horizontal temperature gradient by 10% corresponds to greater vertical shear, resulting in more prolific multiband activity developing ∼12 h earlier. Overall, the relatively large changes in band characteristics over a ∼12-h period (120–133 h) and band evolutions for the sensitivity experiments highlight the potential predictability challenges.

    Significance Statement

    Multiple-banded precipitation structures are difficult to predict and can greatly impact snowfall forecasts. This study investigates the precipitation bands in the comma head of a low pressure system in a numerical model to systematically isolate the roles of different ambient conditions. The results emphasize that environments with instability (e.g., air free to rise after small upward displacement) and increasing winds with height favor the development of banded structures. The forecast challenge for these bands is illustrated by starting the model with relatively small changes in the temperature field. Decreasing the instability by 10% suppresses band development, while increasing (decreasing) the horizontal temperature change across the system by 10% corresponds to the bands developing 12 h earlier (later).

     
    more » « less
  5. Abstract This study investigates whether the thermodynamics of supercell rear-flank outflow can be inferred from the propagation speed and vertical structure of the rear-flank gust front. To quantify the relationship between outflow thermodynamic deficit and gust front structure, CM1 is applied as a two-dimensional cold pool model to assess the vertical slope of cold pools of varying strength in different configurations of ambient shear. The model was run with both free-slip and semislip lower boundary conditions and the results were compared to observations of severe thunderstorm outflow captured by the Texas Tech University Ka-band mobile radars. Simulated cold pools in the free-slip model achieve the propagation speeds predicted by cold pool theory, while cold pool speeds in the semislip model propagate slower. Density current theory is applied to the observed cold pools and predicts the cold pool speed to within about 2 m s−1. Both the free-slip and semislip model results reveal that, in the same sheared flow, the edge of a strong cold pool is less inclined than that of a weaker cold pool. Also, a cold pool in weak ambient shear has a steeper slope than the same cold pool in stronger ambient shear. Nonlinear regressions performed on data from both models capture the proper dependence of slope on buoyancy and shear, but the free-slip model does not predict observed slopes within acceptable error, and the semislip model overpredicts the cold pool slope for all observed cases, but with uncertainty due to shear estimation. 
    more » « less