ABSTRACT Achieving targeted perturbations of neural activity is essential for dissecting the causal architecture of brain circuits. A crucial challenge in targeted manipulation experiments is the identification ofhigh efficacyperturbation sites whose stimulation exerts desired effects, currently done with costly trial-and-error procedures. Can one predict stimulation effects solely based on observations of the circuit activity, in the absence of perturbation? We answer this question in dissociated neuronal cultures on High-Density Microelectrode Arrays (HD-MEAs), which, compared toin vivopreparations, offer a controllablein vitroplatform that enables precise stimulation and full access to network dynamics. We first reconstruct theperturbome- the full map of network responses to focal electrical stimulation - by sequentially activating individual single sites and quantifying their network-wide effects. The measured perturbome patterns cluster into functional modules, with limited spread across clusters. We then demonstrate that the perturbome can be predicted from spontaneous activity alone. Using short baseline recordings in the absence of perturbations, we estimate Effective Connectivity (EC) and show that it predicts the spatial organization of the perturbome, including spatial clusters and local connectivity. Our results demonstrate that spontaneous dynamics encode the latent causal structure of neural circuits and that EC metrics can serve as effective, model-free proxies for stimulation outcomes. This framework enables data-driven targeting and causal inferencein vitro, with potential applications to more complex preparations such as human iPSC-derived neurons and brain organoids, with implications for both basic research and therapeutic strategies targeting neurological disorders. Significance StatementNeuronal cultures are increasingly used as controllable platforms to study neuronal network dynamics, neuromodulation, and brain-inspired therapies. To fully exploit their potential, we need robust methods to probe and interpret causal interactions. Here, we develop a framework to reconstruct the perturbome—the network-wide map of responses to localized electrical stimulation—and show that it can be predicted from spontaneous activity alone. Using simple, model-free metrics of Effective Connectivity, we reveal that ongoing activity encodes causal structure and provides reliable proxies for stimulation outcomes. This validates EC as a practical measure of causal influence in vitro. Our methodology refines the use of neuronal cultures for brain-on-a-chip approaches, and paves the way for data-driven neuromodulation strategies in human stem cell–derived neurons and brain organoids. 
                        more » 
                        « less   
                    
                            
                            Birhythmic Analog Circuit Maze: A Nonlinear Neurostimulation Testbed
                        
                    
    
            Brain dynamics can exhibit narrow-band nonlinear oscillations and multistability. For a subset of disorders of consciousness and motor control, we hypothesized that some symptoms originate from the inability to spontaneously transition from one attractor to another. Using external perturbations, such as electrical pulses delivered by deep brain stimulation devices, it may be possible to induce such transition out of the pathological attractors. However, the induction of transition may be non-trivial, rendering the current open-loop stimulation strategies insufficient. In order to develop next-generation neural stimulators that can intelligently learn to induce attractor transitions, we require a platform to test the efficacy of such systems. To this end, we designed an analog circuit as a model for the multistable brain dynamics. The circuit spontaneously oscillates stably on two periods as an instantiation of a 3-dimensional continuous-time gated recurrent neural network. To discourage simple perturbation strategies, such as constant or random stimulation patterns from easily inducing transition between the stable limit cycles, we designed a state-dependent nonlinear circuit interface for external perturbation. We demonstrate the existence of nontrivial solutions to the transition problem in our circuit implementation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1845836
- PAR ID:
- 10172511
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 22
- Issue:
- 5
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 537
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Neurostimulation - the practice of applying exogenous excitation, e.g., via electrical current, to the brain - has been used for decades in clinical applications such as the treatment of motor disorders and neuropsychiatric illnesses. Over the past several years, more emphasis has been placed on understanding and designing neurostimulation from a systems-theoretic perspective, so as to better optimize its use. Particular questions of interest have included designing stimulation waveforms that best induce certain patterns of brain activity while minimizing expenditure of stimulus power. The pursuit of these designs faces a fundamental conundrum, insofar as they presume that the desired pattern (e.g., desyn-chronization of a neural population) is known a priori. In this paper, we present an alternative paradigm wherein the goal of the stimulation is not to induce a prescribed pattern, but rather to simply improve the functionality of the stimulated circuit/system. Here, the notion of functionality is defined in terms of an information-theoretic objective. Specifically, we seek closed loop control designs that maximize the ability of a controlled circuit to encode an afferent `hidden input,' without prescription of dynamics or output. In this way, the control attempts only to make the system `effective' without knowing beforehand the dynamics that are needed to be induced. We devote most of our effort to defining this framework mathematically, providing algorithmic procedures that demonstrate its solution and interpreting the results of this procedure for simple, prototypical dynamical systems. Simulation results are provided for more complex models, including an example involving control of a canonical neural mass model.more » « less
- 
            Equivariant representation is necessary for the brain and artificial perceptual systems to faithfully represent the stimulus under some (Lie) group transformations. However, it remains unknown how recurrent neural circuits in the brain represent the stimulus equivariantly, nor the neural representation of abstract group operators. The present study uses a one-dimensional (1D) translation group as an example to explore the general recurrent neural circuit mechanism of the equivariant stimulus representation. We found that a continuous attractor network (CAN), a canonical neural circuit model, self-consistently generates a continuous family of stationary population responses (attractors) that represents the stimulus equivariantly. Inspired by the Drosophila’s compass circuit, we found that the 1D translation operators can be represented by extra speed neurons besides the CAN, where speed neurons’ responses represent the moving speed (1D translation group parameter), and their feedback connections to the CAN represent the translation generator (Lie algebra). We demonstrated that the network responses are consistent with experimental data. Our model for the first time demonstrates how recurrent neural circuitry in the brain achieves equivariant stimulus representation.more » « less
- 
            As a field, control systems engineering has developed quantitative methods to characterize the regulation of systems or processes, whose functioning is ubiquitous within synthetic systems. In this context, a control circuit is objectively “well regulated” when discrepancy between desired and achieved output trajectories is minimized and “robust” to the degree that it can regulate well in response to a wide range of stimuli. Most psychiatric disorders are assumed to reflect dysregulation of brain circuits. Yet, probing circuit regulation requires fundamentally different analytic strategies than the correlations relied upon for analyses of connectivity and their resultant networks. Here, we demonstrate how well-established methods for system identification in control systems engineering may be applied to functional magnetic resonance imaging (fMRI) data to extract generative computational models of human brain circuits. As required for clinical neurodiagnostics, we show these models to be extractable even at the level of the single subject. Control parameters provide two quantitative measures of direct relevance for psychiatric disorders: a circuit’s sensitivity to external perturbation and its dysregulation.more » « less
- 
            Neural activity underlying working memory is not a local phenomenon but distributed across multiple brain regions. To elucidate the circuit mechanism of such distributed activity, we developed an anatomically constrained computational model of large-scale macaque cortex. We found that mnemonic internal states may emerge from inter-areal reverberation, even in a regime where none of the isolated areas is capable of generating self-sustained activity. The mnemonic activity pattern along the cortical hierarchy indicates a transition in space, separating areas engaged in working memory and those which do not. A host of spatially distinct attractor states is found, potentially subserving various internal processes. The model yields testable predictions, including the idea of counterstream inhibitory bias, the role of prefrontal areas in controlling distributed attractors, and the resilience of distributed activity to lesions or inactivation. This work provides a theoretical framework for identifying large-scale brain mechanisms and computational principles of distributed cognitive processes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    