skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accessible Computer Science for K-12 Students with Hearing Impairments
An inclusive science, technology, engineering and mathematics (STEM) workforce is needed to maintain America’s leadership in the scientific enterprise. Increasing the participation of underrepresented groups in STEM, including persons with disabilities, requires national attention to fully engage the nation’s citizens in transforming its STEM enterprise. To address this need, a number of initiatives, such as AccessCSforALL, Bootstrap, and CSforAll, are making efforts to make Computer Science inclusive to the 7.4 million K-12 students with disabilities in the U.S. Of special interest to our project are those K-12 students with hearing impairments. American Sign Language (ASL) is the primary means of communication for an estimated 500,000 people in the United States, yet there are limited online resources providing Computer Science instruction in ASL. This paper introduces a new project designed to support Deaf/Hard of Hearing (D/HH) K-12 students and sign interpreters in acquiring knowledge of complex Computer Science concepts. We discuss the motivation for the project and an early design of the accessible block-based Computer Science curriculum to engage D/HH students in hands-on computing education.  more » « less
Award ID(s):
1842092
PAR ID:
10172555
Author(s) / Creator(s):
Date Published:
Journal Name:
https://arxiv.org/pdf/2007.08476.pdf (Universal Access in Human-Computer Interaction. Applications and Practice)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Numerous African American and Hispanic Students with disabilities are confronted with systemic and policy-based challenges preventing access to K-12 STEM-related and computer science education. In addition, the African American and Hispanic Students with Disabilities in the Computer Science Research Alliance conducted an NSF-funded study to understand teachers’ perceptions of district and school policies and practices that hinder the participation of African American and Hispanic students with disabilities in computer science education in Central Texas. The project’s research study fills a critical gap in the literature concerning the systemic barriers affecting African American and Hispanic students with disabilities in K12 computer science education. 
    more » « less
  2. As many as three million school age children between the ages of 5 and 14 years, live with severe to profound hearing loss in Nigeria. Many of these Deaf or Hard of Hearing (DHH) children developed their hearing loss later in life, non-congenitally, hence their parents are hearing. While their teachers in the Deaf schools they attend can often communicate effectively with them in dialects of American Sign Language (ASL), the unofficial sign lingua franca in Nigeria, communication at home with other family members is challenging and sometimes non-existent. This results in adverse social consequences including stigmatization, for the students.With the recent successes of AI in natural language understanding, the goal of automated sign language understanding is becoming more realistic using neural deep learning technologies. To this effect, the proposed project aims at co-designing and developing an ongoing AI-driven two-way sign language interpretation tool that can be deployed in homes, to improve language accessibility and communication between the DHH students and other family members. This ensures inclusive and equitable social interactions and can promote lifelong learning opportunities for them outside of the school environment. 
    more » « less
  3. This article provides an overview of the work pioneered by the consortium of collaborators in the Billion Oyster Curriculum and Community Enterprise for Restoration Science Project (BOP-CCERS). The BOP-CCERS are working to support computational thinking in the New York City public school classrooms by creating curriculum which combines:1. The Field Station Research (Oyster Restoration Stations) and data collection2. The Billion Oyster Project Digital Platform and data input and storage 3. The New York State Science Intermediate Level Learning Standards. 4. The Computer Science Teachers Association K-12 Computer Science StandardsThe integration of computational thinking in the STEM middle school classroom is showcased through the intertwining of these dimensions into a trans-disciplinary learning experience that is rich in both content and practice. Students will be able to explain real-world phenomena found in their own community and design possible solutions through the key components of computational thinking.The Curriculum and Community Enterprise for Restoration Science Project digital platform and curriculum will be the resources that provide the underpinnings of the integration of computational thinking in the STEM middle school classroom. The primary functions of the platform include the collection and housing of the data pertaining to the harbor and its component parts, both abiotic and biotic and the storage of the curriculum for both the classroom and the field stations. 
    more » « less
  4. Kong, S.C. (Ed.)
    This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms. 
    more » « less
  5. Arabnia, Hamid; Deligiannidis, Leonidas; Tinetti, Fernando; Tran, Quoc-Nam (Ed.)
    Millions of people with hearing disabilities use sign language for communication, creating a communication gap with those who are not fluent in ASL (American Sign Language). This paper aims to introduce an ASL interpreter system using a smart-glasses-based augmented reality system. We begin by introducing and comparing two models that translate spoken language into ASL poses. The first system translates spoken text to ASL Gloss, an intermediate representation, before generating ASL poses. The second system directly translates the text to ASL poses. Our analysis shows that using ASL Gloss as an intermediate step significantly improves the translation speed. We then explore a system of encoding ASL pose videos for display on smart glasses. The chosen translation method has a BLEU score of 66.5801 and a rate of 1.825 milliseconds per gloss translation. Our algorithm for mapping gloss text to ASL videos obtained a mean squared error of 0.05, indicating that our system has good translational accuracy and a low mapping error. 
    more » « less