skip to main content


Title: Accessible Computer Science for K-12 Students with Hearing Impairments
An inclusive science, technology, engineering and mathematics (STEM) workforce is needed to maintain America’s leadership in the scientific enterprise. Increasing the participation of underrepresented groups in STEM, including persons with disabilities, requires national attention to fully engage the nation’s citizens in transforming its STEM enterprise. To address this need, a number of initiatives, such as AccessCSforALL, Bootstrap, and CSforAll, are making efforts to make Computer Science inclusive to the 7.4 million K-12 students with disabilities in the U.S. Of special interest to our project are those K-12 students with hearing impairments. American Sign Language (ASL) is the primary means of communication for an estimated 500,000 people in the United States, yet there are limited online resources providing Computer Science instruction in ASL. This paper introduces a new project designed to support Deaf/Hard of Hearing (D/HH) K-12 students and sign interpreters in acquiring knowledge of complex Computer Science concepts. We discuss the motivation for the project and an early design of the accessible block-based Computer Science curriculum to engage D/HH students in hands-on computing education.  more » « less
Award ID(s):
1842092
NSF-PAR ID:
10172555
Author(s) / Creator(s):
Date Published:
Journal Name:
https://arxiv.org/pdf/2007.08476.pdf (Universal Access in Human-Computer Interaction. Applications and Practice)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The CCERS partnership includes collaborators from universities, foundations, education departments, community organizations, and cultural institutions to build a new curriculum. As reported in a study conducted by the Rand Corporation (2011), partnerships among districts, community-based organizations, government agencies, local funders, and others can strengthen learning programs. The curriculum merged project-based learning and Bybee’s 5E model (Note 1) to teach core STEM-C concepts to urban middle school students through restoration science. CCERS has five interrelated and complementary programmatic pillars (see details in the next section). The CCERS curriculum encourages urban middle school students to explore and participate in project-based learning activities restoring the oyster population in and around New York Harbor. In Melaville, Berg and Blank’s Community Based Learning (2001) there is a statement that says, “Education must connect subject matter with the places where students live and the issues that affect us all”. Lessons engage students and teachers in long-term restoration ecology and environmental monitoring projects with STEM professionals and citizen scientists. In brief, partners have created curriculums for both in-school and out-of-school learning programs, an online platform for educators and students to collaborate, and exhibits with community partners to reinforce and extend both the educators’ and their students’ learning. Currently CCERS implementation involves: • 78 middle schools • 127 teachers • 110 scientist volunteers • Over 5000 K-12 students In this report, we present summative findings from data collected via surveys among three cohorts of students whose teachers were trained by the project’s curriculum and findings from interviews among project leaders to answer the following research questions: 1. Do the five programmatic pillars function independently and collectively as a system of interrelated STEM-C content delivery vehicles that also effectively change students’ and educators’ disposition towards STEM-C learning and environmental restoration and stewardship? 2. What comprises the "curriculum plus community enterprise" local model? 3. What are the mechanisms for creating sustainability and scalability of the model locally during and beyond its five-year implementation? 4. What core aspects of the model are replicable? Findings suggest the program improved students’ knowledge in life sciences but did not have a significant effect on students’ intent to become a scientist or affinity for science. Published by Sciedu Press 1 ISSN 2380-9183 E-ISSN 2380-9205 http://irhe.sciedupress.com International Research in Higher Education Vol. 3, No. 4; 2018 Interviews with project staff indicated that the key factors in the model were its conservation mission, partnerships, and the local nature of the issues involved. The primary mechanisms for sustainability and scalability beyond the five-year implementation were the digital platform, the curriculum itself, and the dissemination (with over 450 articles related to the project published in the media and academic journals). The core replicable aspects identified were the digital platform and adoption in other Keystone species contexts. 
    more » « less
  2. This article provides an overview of the work pioneered by the consortium of collaborators in the Billion Oyster Curriculum and Community Enterprise for Restoration Science Project (BOP-CCERS). The BOP-CCERS are working to support computational thinking in the New York City public school classrooms by creating curriculum which combines:1. The Field Station Research (Oyster Restoration Stations) and data collection2. The Billion Oyster Project Digital Platform and data input and storage 3. The New York State Science Intermediate Level Learning Standards. 4. The Computer Science Teachers Association K-12 Computer Science StandardsThe integration of computational thinking in the STEM middle school classroom is showcased through the intertwining of these dimensions into a trans-disciplinary learning experience that is rich in both content and practice. Students will be able to explain real-world phenomena found in their own community and design possible solutions through the key components of computational thinking.The Curriculum and Community Enterprise for Restoration Science Project digital platform and curriculum will be the resources that provide the underpinnings of the integration of computational thinking in the STEM middle school classroom. The primary functions of the platform include the collection and housing of the data pertaining to the harbor and its component parts, both abiotic and biotic and the storage of the curriculum for both the classroom and the field stations. 
    more » « less
  3. Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed. This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields. This work-in-progress paper describes a new study underway to develop and disseminate a model of disciplinary literacy in engineering. During this project, researchers will observe, interview, and collect written artifacts from engineers working across four sub-disciplines of engineering: aerospace/mechanical, biological, civil/environmental, and electrical/computer. Data that will be collected include interview transcripts, observation field notes, engineer logs of literacy practices, and photographs of texts that the engineers read and write. Data will be analyzed using constant comparative analytic (CCA) methods. CCA will be used to generate theoretical codes from the data that will form the basis for a model of disciplinary literacy in engineering. As a primary outcome of this research, the engineering DLI model will promote the use of DLI practices within K-12 engineering instruction in order to assist and encourage diverse, underrepresented students to engage in engineering courses of study and pursue STEM careers. Thus far, the research team has begun collecting and analyzing data from two electrical engineers. This work in progress paper will report on preliminary findings, as well as implications for K-12 classroom instruction. For instance, this study has shed insights on how engineers use texts as part of the process of conducting failure analysis, and the research team has begun to conceptualize how these types of texts might be used with K-12 students to help them conduct failure analyses during design testing. Ultimately, this project will result in a list of grade-appropriate texts, evaluative frameworks, and activities (e.g., failure analysis in testing) that K-12 engineering teachers can use to prepare their diverse students to think, act, read, and write like engineers. 
    more » « less
  4. As many as three million school age children between the ages of 5 and 14 years, live with severe to profound hearing loss in Nigeria. Many of these Deaf or Hard of Hearing (DHH) children developed their hearing loss later in life, non-congenitally, hence their parents are hearing. While their teachers in the Deaf schools they attend can often communicate effectively with them in dialects of American Sign Language (ASL), the unofficial sign lingua franca in Nigeria, communication at home with other family members is challenging and sometimes non-existent. This results in adverse social consequences including stigmatization, for the students.With the recent successes of AI in natural language understanding, the goal of automated sign language understanding is becoming more realistic using neural deep learning technologies. To this effect, the proposed project aims at co-designing and developing an ongoing AI-driven two-way sign language interpretation tool that can be deployed in homes, to improve language accessibility and communication between the DHH students and other family members. This ensures inclusive and equitable social interactions and can promote lifelong learning opportunities for them outside of the school environment.

     
    more » « less
  5. Designing a Curriculum to Broaden Middle School Students’ Ideas and Interest in Engineering As the 21st century progresses, engineers will play critical roles in addressing complex societal problems such as climate change and nutrient pollution. Research has shown that more diverse teams lead to more creative and effective solutions (Smith-Doerr et al., 2017). However, while some progress has been made in increasing the number of women and people of color, 83% of employed engineers are male and 68% of engineers are white (NSF & NCSES, 2019). Traditional K–12 approaches to engineering often emphasize construction using a trial-and-error approach (ASEE, 2020). Although this approach may appeal to some students, it may alienate other students who then view engineering simply as “building things.” Designing engineering experiences that broaden students’ ideas about engineering, may help diversify the students entering the engineering pipeline. To this end, we developed Solving Community Problems with Engineering (SCoPE), an engineering curriculum that engages seventh-grade students in a three-week capstone project focusing on nutrient pollution in their local watershed. SCoPE engages students with the problem through local news articles about nutrient pollution and images of algae covered lakes, which then drives the investigation into the detrimental processes caused by excess nutrients entering bodies of water from sources such as fertilizer and wastewater. Students research the sources of nutrient pollution and potential solutions, and use simulations to investigate key variables and optimize the types of strategies for effectively decreasing and managing nutrient pollution to help develop their plans. Throughout the development process, we worked with a middle school STEM teacher to ensure the unit builds upon the science curriculum and the activities would be engaging and meaningful to students. The problem and location were chosen to illustrate that engineers can solve problems relevant to rural communities. Since people in rural locations tend to remain very connected to their communities throughout their lives, it is important to illustrate that engineering could be a relevant and viable career near home. The SCoPE curriculum was piloted with two teachers and 147 seventh grade students in a rural public school. Surveys and student drawings of engineers before and after implementation of the curriculum were used to characterize changes in students’ interest and beliefs about engineering. After completing the SCoPE curriculum, students’ ideas about engineers’ activities and the types of problems they solve were broadened. Students were 53% more likely to believe that engineers can protect the environment and 23% more likely to believe that they can identify problems in the community to solve (p < 0.001). When asked to draw an engineer, students were 1.3 times more likely to include nature/environment/agriculture (p < 0.01) and 3 times more likely to show engineers helping people in the community (p< 0.05) Additionally, while boys’ interest in science and engineering did not significantly change, girls’ interest in engineering and confidence in becoming an engineer significantly increased (Cohen’s D = 0.28, p<0.05). The SCoPE curriculum is available on PBS LearningMedia: https://www.pbslearningmedia.org/collection/solving-community-problems-with-engineering/ This project was funded by NSF through the Division of Engineering Education and Centers, Research in the Formation of Engineers program #202076. References American Society for Engineering Education. (2020). Framework for P-12 Engineering Learning. Washington, DC. DOI: 10.18260/1-100-1153 National Science Foundation, National Center for Science and Engineering Statistics. (2019). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2019. Special Report NSF 17-310. Arlington, VA. https://ncses.nsf.gov/pubs/nsf21321/. Smith-Doerr, L., Alegria, S., & Sacco, T. (2017). How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts, Engaging Science, Technology, and Society 3, 139-153. 
    more » « less