skip to main content

Title: Controlling magnetism of Au 133 (TBBT) 52 nanoclusters at single electron level and implication for nonmetal to metal transition
The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s 1 ) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au 133 (TBBT) 52 ] 0 nanoclusters (where TBBT = 4- tert -butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au 133 (TBBT) 52 ] 0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au 133 (TBBT) 52 ] 0 to [Au 133 (TBBT) 52 ] + and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge more » and magnetic states of Au 133 (TBBT) 52 , and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au 133 (TBBT) 52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi- D 2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au 133 (TBBT) 52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1808675
Publication Date:
NSF-PAR ID:
10172594
Journal Name:
Chemical Science
Volume:
10
Issue:
42
Page Range or eLocation-ID:
9684 to 9691
ISSN:
2041-6520
Sponsoring Org:
National Science Foundation
More Like this
  1. The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic 89 Y ( I = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution.more »This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim 3− ˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp* 2 Y) 2 (μ-Bbim˙)] is provided. Access of Bbim 3− ˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim 2− was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim 2− (1) and Bbim 3− ˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vis spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim 2− complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim 3− ˙ ligand was revealed via temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim 3− ˙ an ideal candidate for single-molecule magnet design.« less
  2. Introducing spin onto organic ligands that are coordinated to rare earth metal ions allows direct exchange with metal spin centres. This is particularly relevant for the deeply buried 4f-orbitals of the lanthanide ions that can give rise to unparalleled magnetic properties. For efficacy of exchange coupling, the donor atoms of the radical ligand require high-spin density. Such molecules are extremely rare owing to their reactive nature that renders isolation and purification difficult. Here, we demonstrate that a 2,2′-azopyridyl (abpy) radical ( S = 1/2) bound to the rare earth metal yttrium can be realized. This molecule represents the first raremore »earth metal complex containing an abpy radical and is unambigously characterized by X-ray crystallography, NMR, UV-Vis-NIR, and IR spectroscopy. In addition, the most stable isotope 89 Y with a natural abundance of 100% and a nuclear spin of ½ allows an in-depth analysis of the yttrium–radical complex via EPR and HYSCORE spectroscopy. Further insight into the electronic ground state of the radical azobispyridine-coordinated metal complex was realized through unrestricted DFT calculations, which suggests that the unpaired spin density of the SOMO is heavily localized on the azo and pyridyl nitrogen atoms. The experimental results are supported by NBO calculations and give a comprehensive picture of the spin density of the azopyridyl ancillary ligand. This unexplored azopyridyl radical anion in heavy element chemistry bears crucial implications for the design of molecule-based magnets particularly comprising anisotropic lanthanide ions.« less
  3. Ultrasmall metal nanoparticles (below 2.2 nm core diameter) start to show discrete electronic energy levels due to strong quantum confinement effects and thus behave much like molecules. The size and structure dependent quantization induces a plethora of new phenomena, including multi-band optical absorption, enhanced luminescence, single-electron magnetism, and catalytic reactivity. The exploration of such new properties is largely built on the success in unveiling the crystallographic structures of atomically precise nanoclusters (typically protected by ligands, formulated as M n L m q , where M = metal, L = Ligand, and q = charge). Correlation between the atomic structures ofmore »nanoclusters and their properties has further enabled atomic-precision engineering toward materials design. In this frontier article, we illustrate several aspects of the precise engineering of gold nanoclusters, such as the single-atom size augmenting, single-atom dislodging and doping, precise surface modification, and single-electron control for magnetism. Such precise engineering involves the nanocluster's geometric structure, surface chemistry, and electronic properties, and future endeavors will lead to new materials design rules for structure–function correlations and largely boost the applications of metal nanoclusters in optics, catalysis, magnetism, and other fields. Following the illustrations of atomic-precision engineering, we have also put forth some perspectives. We hope this frontier article will stimulate research interest in atomic-level engineering of nanoclusters.« less
  4. α-RuCl3 is a layered transition metal halide that possesses a range of exotic magnetic, optical, and electronic properties including fractional excitations indicative of a proximate Kitaev quantum spin liquid (QSL). While previous reports have explored these properties on idealized single crystals or mechanically exfoliated samples, the scalable production of α-RuCl3 nanosheets has not yet been demonstrated. Here, we perform liquid-phase exfoliation (LPE) of α-RuCl3 through an electrochemically assisted approach, which yields ultrathin, electron-doped α-RuCl3 nanosheets that are then assembled into electrically conductive large-area thin films. The crystalline integrity of the α-RuCl3 nanosheets following LPE is confirmed through a wide rangemore »of structural and chemical analyses. Moreover, the physical properties of the LPE α-RuCl3 nanosheets are investigated through electrical, optical, and magnetic characterization methods, which reveal a structural phase transition at 230 K that is consistent with the onset of Kitaev paramagnetism in addition to an antiferromagnetic transition at 2.6 K. Intercalated ions from the electrochemical LPE protocol favorably alter the optical response of the α-RuCl3 nanosheets, enabling large-area Mott insulator photodetectors that operate at telecommunications-relevant infrared wavelengths near 1.55 μm. These photodetectors show a linear photocurrent response as a function of incident power, which suggests negligible trap-mediated recombination or photothermal effects, ultimately resulting in a photoresponsivity of ≈2 mA/W.« less
  5. Recent advances in the determination of crystal structures and studies of optical properties of gold nanoclusters in the size range from tens to hundreds of gold atoms have started to reveal the grand evolution from gold complexes to nanoclusters and further to plasmonic nanoparticles. However, a detailed comparison of their photophysical properties is still lacking. Here, we compared the excited state behaviors of gold complexes, nanolcusters, and plasmonic nanoparticles, as well as small organic molecules by choosing four typical examples including the Au10 complex, Au25 nanocluster (1 nm metal core), 13 diameter Au nanoparticles, and Rhodamine B. To compare theirmore »photophysical behaviors, we performed steady-state absorption, photoluminescence, and femtosecond transient absorption spectroscopic measurements. It was found that gold nanoclusters behave somewhat like small molecules, showing both rapid internal conversion (<1 ps) and long-lived excited state lifetime (about 100 ns). Unlike the nanocluster form in which metal–metal transitions dominate, gold complexes showed significant charge transfer between metal atoms and surface ligands. Plasmonic gold nanoparticles, on the other hand, had electrons being heated and cooled (~100 ps time scale) after photo-excitation, and the relaxation was dominated by electron–electron scattering, electron–phonon coupling, and energy dissipation. In both nanoclusters and plasmonic nanoparticles, one can observe coherent oscillations of the metal core, but with different fundamental origins. Overall, this work provides some benchmarking features for organic dye molecules, organometallic complexes, metal nanoclusters, and plasmonic nanoparticles.« less