skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Direction of Arrival Estimation in the Presence of Array Faults using Snapshot Diversity
Many direction-of-arrival (DOA) estimation algo- rithms require accurate measurements from all sensing elements on an antenna array. However, in various practical settings, it becomes imperative to perform DOA estimation even in the presence of faulty elements. In this work, we develop an algorithm that can jointly estimate the DOA of sources and the locations of the faulty elements. This is achieved by introducing weights that describe the degree of outlierness of each element. Further, for situations where only single snapshots are available, we propose a new snapshot diversity formulation for which our algorithm can still be applied. Simulation results over four different fault models demonstrate that the proposed algorithm robustly estimates DOAs and accurately identifies the faulty elements.  more » « less
Award ID(s):
1717610
PAR ID:
10172717
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
Volume:
1
Issue:
1
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper provides a simple yet effective approach to improve direction-of-arrival (DOA) estimation performance in extreme signal-to-noise-ratio (SNR) conditions. As an example, a multiple signal classification (MUSIC) algorithm with a deep learning (DL) approach is used. First, brief research into the existing DOA estimation techniques is provided, followed by a demonstration of a simulation environment created on the MATLAB platform to generate and resolve signals from a uniform rectangular array of antenna elements. Following that is an attempt to improve the estimation accuracy of these signals by training various DL approaches, including multi-layer perceptron and one- and two-dimensional convolutional neural networks, using the generated dataset. Key findings include the cases where the developed DL approach can resolve signals and provide accurate DOA estimations that the MUSIC algorithm cannot. 
    more » « less
  2. null (Ed.)
    Reconfigurable antenna systems have gained much attention for potential use in the next generation wireless systems. However, conventional direction-of-arrival (DoA) estimation algorithms for antenna arrays cannot be used directly in reconfigurable antennas due to different design of the antennas. In this paper, we present an adjacent pattern power ratio (APPR) algorithm for two-port composite right/left-handed (CRLH) reconfigurable leaky-wave antennas (LWAs). Additionally, we compare the performances of the APPR algorithm and LWA-based MUSIC algorithms. We study how the computational complexity and the performance of the algorithms depend on number of selected radiation patterns. In addition, we evaluate the performance of the APPR and MUSIC algorithms with numerical simulations as well as with real world indoor measurements having both line-of-sight and non-line-of-sight components. Our performance evaluations show that the DoA estimates are in a considerably good agreement with the real DoAs, especially with the APPR algorithm. In summary, the APPR and MUSIC algorithms for DoA estimation along with the planar and compact LWA layout can be a valuable solution to enhance the performance of the wireless communication in the next generation systems. 
    more » « less
  3. null (Ed.)
    Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation from one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. 
    more » « less
  4. The vibrational response of an elastic panel to incident acoustic waves is determined by the direction-of-arrival (DOA) of the waves relative to the spatial structure of the panel's bending modes. By monitoring the relative modal excitations of a panel immersed in a sound field, the DOA of the source may be inferred. In reverberant environments, early acoustic reflections and the late diffuse acoustic field may obscure the DOA of incoming sound waves. Panel microphones may be especially susceptible to the effects of reverberation due to their large surface areas and long-decaying impulse responses. An investigation into the effect of reverberation on the accuracy of DOA estimation with panel microphones was made by recording wake-word utterances in eight spaces with reverberation times (RT60s) ranging from 0.27 to 3.00 s. The responses were used to train neural networks to estimate the DOA. Within ±5°, DOA estimation reliability was measured at 95.00% in the least reverberant space, decreasing to 78.33% in the most reverberant space, suggesting an inverse relationship between RT60 and DOA accuracy. Experimental results suggest that a system for estimating DOA with panel microphones can generalize to new acoustic environments by cross-training the system with data from multiple spaces with different RT60s. 
    more » « less
  5. Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error. 
    more » « less