skip to main content


Title: Robust Direction of Arrival Estimation in the Presence of Array Faults using Snapshot Diversity
Many direction-of-arrival (DOA) estimation algo- rithms require accurate measurements from all sensing elements on an antenna array. However, in various practical settings, it becomes imperative to perform DOA estimation even in the presence of faulty elements. In this work, we develop an algorithm that can jointly estimate the DOA of sources and the locations of the faulty elements. This is achieved by introducing weights that describe the degree of outlierness of each element. Further, for situations where only single snapshots are available, we propose a new snapshot diversity formulation for which our algorithm can still be applied. Simulation results over four different fault models demonstrate that the proposed algorithm robustly estimates DOAs and accurately identifies the faulty elements.  more » « less
Award ID(s):
1717610
NSF-PAR ID:
10172717
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
Volume:
1
Issue:
1
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Reconfigurable antenna systems have gained much attention for potential use in the next generation wireless systems. However, conventional direction-of-arrival (DoA) estimation algorithms for antenna arrays cannot be used directly in reconfigurable antennas due to different design of the antennas. In this paper, we present an adjacent pattern power ratio (APPR) algorithm for two-port composite right/left-handed (CRLH) reconfigurable leaky-wave antennas (LWAs). Additionally, we compare the performances of the APPR algorithm and LWA-based MUSIC algorithms. We study how the computational complexity and the performance of the algorithms depend on number of selected radiation patterns. In addition, we evaluate the performance of the APPR and MUSIC algorithms with numerical simulations as well as with real world indoor measurements having both line-of-sight and non-line-of-sight components. Our performance evaluations show that the DoA estimates are in a considerably good agreement with the real DoAs, especially with the APPR algorithm. In summary, the APPR and MUSIC algorithms for DoA estimation along with the planar and compact LWA layout can be a valuable solution to enhance the performance of the wireless communication in the next generation systems. 
    more » « less
  2. In conventional ESPRIT, a single translational invariance in a sensor array is used to obtain high-resolution direction-of-arrival (DOA) estimation. However, when the invariance is greater than the classical sensor spacing =2, spatial frequency ambiguity may occur. In this paper, we propose to use multiple setwise coprime invariances to resolve this ambiguity. While special cases of this were known in the literature, our algorithm is more general in that we consider any number of invariances, and that it can perfectly recover any number of DOAs (limited only in terms of number of sensors) if infinite snapshots are available. We also demonstrate through simulation that our algorithm works well in a practical setting where only finite snapshots are available. 
    more » « less
  3. null (Ed.)
    Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation from one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. 
    more » « less
  4. Abstract

    While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.

     
    more » « less
  5. null (Ed.)
    This article considers resilient cooperative state estimation in unreliable multiagent networks. A network of agents aim to collaboratively estimate the value of an unknown vector parameter, while an unknown subset of agents suffer Byzantine faults. We refer to the faulty agents as Byzantine agents. Byzantine agents malfunction arbitrarily and may send out highly unstructured messages to other agents in the network. As opposed to fault-free networks, reaching agreement in the presence of Byzantine agents is far from trivial. In this article, we propose a computationally efficient algorithm that is provably robust to Byzantine agents. At each iteration of the algorithm, a good agent performs a gradient descent update based on noisy local measurements, exchanges its update with other agents in its neighborhood, and robustly aggregates the received messages using coordinate-wise trimmed means. Under mild technical assumptions, we establish that good agents learn the true parameter asymptotically in almost sure sense. We further complement our analysis by proving (high probability) finite-time convergence rate, encapsulating network characteristics. 
    more » « less