skip to main content


Title: Deep Learning-Enabled Improved Direction-of-Arrival Estimation Technique

This paper provides a simple yet effective approach to improve direction-of-arrival (DOA) estimation performance in extreme signal-to-noise-ratio (SNR) conditions. As an example, a multiple signal classification (MUSIC) algorithm with a deep learning (DL) approach is used. First, brief research into the existing DOA estimation techniques is provided, followed by a demonstration of a simulation environment created on the MATLAB platform to generate and resolve signals from a uniform rectangular array of antenna elements. Following that is an attempt to improve the estimation accuracy of these signals by training various DL approaches, including multi-layer perceptron and one- and two-dimensional convolutional neural networks, using the generated dataset. Key findings include the cases where the developed DL approach can resolve signals and provide accurate DOA estimations that the MUSIC algorithm cannot.

 
more » « less
Award ID(s):
2153875
NSF-PAR ID:
10531501
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Electronics
Volume:
12
Issue:
16
ISSN:
2079-9292
Page Range / eLocation ID:
3505
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parameter estimation from noisy and one-bit quantized data has become an important topic in signal processing, as it offers low cost and low complexity in the implementation. On the other hand, Direction-of-Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing due to their attractive capability of providing enhanced degrees of freedom. In this paper, the problem of DoA estimation from one-bit measurements received by an SLA is considered and a novel framework for solving this problem is proposed. The proposed approach first provides an estimate of the received signal covariance matrix through minimization of a constrained weighted least-squares criterion. Then, MUSIC is applied to the spatially smoothed version of the estimated covariance matrix to find the DoAs of interest. Several numerical results are provided to demonstrate the superiority of the proposed approach over its counterpart already propounded in the literature. 
    more » « less
  2. null (Ed.)
    Reconfigurable antenna systems have gained much attention for potential use in the next generation wireless systems. However, conventional direction-of-arrival (DoA) estimation algorithms for antenna arrays cannot be used directly in reconfigurable antennas due to different design of the antennas. In this paper, we present an adjacent pattern power ratio (APPR) algorithm for two-port composite right/left-handed (CRLH) reconfigurable leaky-wave antennas (LWAs). Additionally, we compare the performances of the APPR algorithm and LWA-based MUSIC algorithms. We study how the computational complexity and the performance of the algorithms depend on number of selected radiation patterns. In addition, we evaluate the performance of the APPR and MUSIC algorithms with numerical simulations as well as with real world indoor measurements having both line-of-sight and non-line-of-sight components. Our performance evaluations show that the DoA estimates are in a considerably good agreement with the real DoAs, especially with the APPR algorithm. In summary, the APPR and MUSIC algorithms for DoA estimation along with the planar and compact LWA layout can be a valuable solution to enhance the performance of the wireless communication in the next generation systems. 
    more » « less
  3. null (Ed.)
    Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation from one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. 
    more » « less
  4. null (Ed.)
    The convolutional beamspace (CBS) method for DOA estimation using dictionary-based sparse signal recovery is introduced. Beamspace methods enjoy lower computational complexity, increased parallelism of subband processing, and improved DOA resolution. But unlike classical beamspace methods, CBS allows root-MUSIC and ESPRIT to be performed directly for ULAs without additional preparation since the Vandermonde structure for ULAs are preserved in the CBS output. Due to the same reason, it is shown in this paper that sparse signal representation problems can also be directly formulated on the CBS output. Significant reduction in computational complexity and higher probability of resolution are obtained by using CBS. It is also shown how the regularization parameter involved in the method should be chosen 
    more » « less
  5. null (Ed.)
    Abstract One of the classical approaches for estimating the frequencies and damping factors in a spectrally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank structure of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery problems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which has achieved great success in solving line spectrum estimation problems. However, as far as we know, the general ANM (not NNM) considered in many existing works can only handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an algorithm for spectral estimation that involves searching for the peaks of the dual polynomial corresponding to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in existing literature. Simulation results also indicate that the proposed algorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials. 
    more » « less