Abstract Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multiple ancilla qubits and multi-qubit control gates. In order to simulate a certain class of n -qubit random Hamiltonians, we propose a drastically simplified quantum circuit that we refer to as the minimal QSVT circuit, which uses only one ancilla qubit and no multi-qubit controlled gates. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a scalable quantum benchmark and can be verified without any need for classical computation. Under the globally depolarized noise model, we demonstrate that QUES is directly related to the circuit fidelity, and the potential classical hardness of an associated quantum circuit sampling problem. Under the same assumption, theoretical analysis suggests there exists an ‘optimal’ simulation time t opt ≈ 4.81, at which even a noisy quantum device may be sufficient to demonstrate the potential classical hardness.
more »
« less
Quantum Wasserstein Generative Adversarial Networks
The study of quantum generative models is well-motivated, not only because of its importance in quantum machine learning and quantum chemistry but also because of the perspective of its implementation on near-term quantum machines. Inspired by previous studies on the adversarial training of classical and quantum generative models, we propose the first design of quantum Wasserstein Generative Adversarial Networks (WGANs), which has been shown to improve the robustness and the scalability of the adversarial training of quantum generative models even on noisy quantum hardware. Specifically, we propose a definition of the Wasserstein semimetric between quantum data, which inherits a few key theoretical merits of its classical counterpart. We also demonstrate how to turn the quantum Wasserstein semimetric into a concrete design of quantum WGANs that can be efficiently implemented on quantum machines. Our numerical study, via classical simulation of quantum systems, shows the more robust and scalable numerical performance of our quantum WGANs over other quantum GAN proposals. As a surprising application, our quantum WGAN has been used to generate a 3-qubit quantum circuit of ~50 gates that well approximates a 3-qubit 1-d Hamiltonian simulation circuit that requires over 10k gates using standard techniques.
more »
« less
- Award ID(s):
- 1816695
- PAR ID:
- 10172833
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Page Range / eLocation ID:
- 6781--6792
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Scalability of today’s superconducting quantum computers is limited due to the huge costs of generating/routing microwave control pulses per qubit from room temperature. One active research area in both industry and academia is to push the classical controllers to the dilution refrigerator in order to increase the scalability of quantum computers. Superconducting Single Flux Quantum (SFQ) is a classical logic technology with low power consumption and ultra-high speed, and thus is a promising candidate for in-fridge classical controllers with maximized scalability. Prior work has demonstrated high-fidelity SFQ-based single-qubit gates. However, little research has been done on SFQ-based multi-qubit gates, which are necessary to realize SFQ-based universal quantum computing.In this paper, we present the first thorough analysis of SFQ-based two-qubit gates. Our observations show that SFQ-based two-qubit gates tend to have high leakage to qubit non-computational subspace, which presents severe design challenges. We show that despite these challenges, we can realize gates with high fidelity by carefully designing optimal control methods and qubit architectures. We develop optimal control methods that suppress leakage, and also investigate various qubit architectures that reduce the leakage. After carefully engineering our SFQ-friendly quantum system, we show that it can achieve similar gate fidelity and gate time to microwave-based quantum systems. The promising results of this paper show that (1) SFQ-based universal quantum computation is both feasible and effective; and (2) SFQ is a promising approach in designing classical controller for quantum machines because it can increase the scalability while preserving gate fidelity and performance.more » « less
-
Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research has explored a higher level of optimization by making the quantum circuits themselves resilient to noise.In this paper, we propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search from parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates (e.g., U3 and CU3) and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates in a fine-grained manner.Extensively evaluated with 12 quantum machine learning (QML) and variational quantum eigensolver (VQE) benchmarks on 14 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human, random, and existing noise-adaptive qubit mapping baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H 2 , H 2 O, LiH, CH 4 , BeH 2 compared with UCCSD baselines. We also open-source the TorchQuantum library for fast training of parameterized quantum circuits to facilitate future research.more » « less
-
Arai, Kohei (Ed.)This research compares and contrasts two commonly available quantum computing platforms available today to academic researchers: the IBM Q-Experience and the University of Maryland's IonQ. Hands-on testing utilized the implementation of a simple two qubit circuit and tested the Pauli X, Y, and Z single-qubit gates as well as the CNOT 2+ qubit gate and compared the results, as well as the user experience. The user experience and the interface must be straightforward to help the user's understanding when planning quantum computing training for new knowledge workers in this exciting new field. Additionally, we demonstrate how a quantum computer's results, when the output is read in the classical computer, loses some of its information, since the quantum computer is operating in more dimensions than the classical computer can interpret. This is demonstrated with the ZX and XZ gates which appear to give the same result; however, using the mathematics of matrix notation, the phase difference between the two answers is revealed in their vectors, which are 180 degrees apart.more » « less
-
Quantum systems have the potential to demonstrate significant computational advantage, but current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods. The unintentional coupling of qubits to their environment and each other adds significant noise to computation, and improved methods to combat decoherence are required to boost the performance of quantum algorithms on real machines. While many existing techniques for mitigating error rely on adding extra gates to the circuit [ 13 , 20 , 56 ], calibrating new gates [ 50 ], or extending a circuit’s runtime [ 32 ], this article’s primary contribution leverages the gates already present in a quantum program without extending circuit duration. We exploit circuit slack for single-qubit gates that occur in idle windows, scheduling the gates such that their timing can counteract some errors. Spin-echo corrections that mitigate decoherence on idling qubits act as inspiration for this work. Theoretical models, however, fail to capture all sources of noise in Noisy Intermediate Scale Quantum devices, making practical solutions necessary that better minimize the impact of unpredictable errors in quantum machines. This article presents TimeStitch: a novel framework that pinpoints the optimum execution schedules for single-qubit gates within quantum circuits. TimeStitch, implemented as a compilation pass, leverages the reversible nature of quantum computation to boost the success of circuits on real quantum machines. Unlike past approaches that apply reversibility properties to improve quantum circuit execution [ 35 ], TimeStitch amplifies fidelity without violating critical path frontiers in either the slack tuning procedures or the final rescheduled circuit. On average, compared to a state-of-the-art baseline, a practically constrained TimeStitch achieves a mean 38% relative improvement in success rates, with a maximum of 106%, while observing bounds on circuit depth. When unconstrained by depth criteria, TimeStitch produces a mean relative fidelity increase of 50% with a maximum of 256%. Finally, when TimeStitch intelligently leverages periodic dynamical decoupling within its scheduling framework, a mean 64% improvement is observed over the baseline, relatively outperforming stand-alone dynamical decoupling by 19%, with a maximum of 287%.more » « less
An official website of the United States government

