Neutral atom arrays have become a promising platform for quantum computing, especially the field programmable qubit array (FPQA) endowed with the unique capability of atom movement. This feature allows dynamic alterations in qubit connectivity during runtime, which can reduce the cost of executing long-range gates and improve parallelism. However, this added flexibility introduces new challenges in circuit compilation. Inspired by the placement and routing strategies for FPGAs, we propose to map all data qubits to fixed atoms while utilizing movable atoms to route for 2-qubit gates between data qubits. Coined flying ancillas, these mobile atoms function as ancilla qubits, dynamically generated and recycled during execution. We present Q-Pilot, a scalable compiler for FPQA employing flying ancillas to maximize circuit parallelism. For two important quantum applications, quantum simulation and the Quantum Approximate Optimization Algorithm (QAOA), we devise domain-specific routing strategies. In comparison to alternative technologies such as superconducting devices or fixed atom arrays, Q-Pilot effectively harnesses the flexibility of FPQA, achieving reductions of 1.4x, 27.7x, and 6.3x in circuit depth for 100-qubit random, quantum simulation, and QAOA circuits, respectively.
more »
« less
A quantum hamiltonian simulation benchmark
Abstract Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multiple ancilla qubits and multi-qubit control gates. In order to simulate a certain class of n -qubit random Hamiltonians, we propose a drastically simplified quantum circuit that we refer to as the minimal QSVT circuit, which uses only one ancilla qubit and no multi-qubit controlled gates. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a scalable quantum benchmark and can be verified without any need for classical computation. Under the globally depolarized noise model, we demonstrate that QUES is directly related to the circuit fidelity, and the potential classical hardness of an associated quantum circuit sampling problem. Under the same assumption, theoretical analysis suggests there exists an ‘optimal’ simulation time t opt ≈ 4.81, at which even a noisy quantum device may be sufficient to demonstrate the potential classical hardness.
more »
« less
- Award ID(s):
- 2016245
- PAR ID:
- 10424844
- Date Published:
- Journal Name:
- npj Quantum Information
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2056-6387
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantum cellular automata (QCA) evolve qubits in a quantum circuit depending only on the states of their neighborhoods and model how rich physical complexity can emerge from a simple set of underlying dynamical rules. The inability of classical computers to simulate large quantum systems hinders the elucidation of quantum cellular automata, but quantum computers offer an ideal simulation platform. Here, we experimentally realize QCA on a digital quantum processor, simulating a one-dimensional Goldilocks rule on chains of up to 23 superconducting qubits. We calculate calibrated and error-mitigated population dynamics and complex network measures, which indicate the formation of small-world mutual information networks. These networks decohere at fixed circuit depth independent of system size, the largest of which corresponding to 1,056 two-qubit gates. Such computations may enable the employment of QCA in applications like the simulation of strongly-correlated matter or beyond-classical computational demonstrations.more » « less
-
Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qutrits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic depth (runtime) decomposition of the Generalized Toffoli gate using no ancilla-a significant improvement over linear depth for the best qubit-only equivalent. Our circuit construction also features a 70x improvement in two-qudit gate count over the qubit-only equivalent decomposition. This results in circuit cost reductions for important algorithms like quantum neurons and Grover search. We develop an open-source circuit simulator for qutrits, along with realistic near-term noise models which account for the cost of operating qutrits. Simulation results for these noise models indicate over 90% mean reliability (fidelity) for our circuit construction, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path towards scaling quantum computation.more » « less
-
Adiabatic computing with two degrees of freedom of 2-local Hamiltonians has been theoretically shown to be equivalent to the gate model of universal quantum computing. But today’s quantum annealers, namely D-Wave’s 2000Q platform, only provide a 2-local Ising Hamiltonian abstraction with a single degree of freedom. This raises the question what subset of gate programs can be expressed as quadratic unconstrained binary problems (QUBOs) on the D-Wave. The problem is of interest because gate-based quantum platforms are currently limited to 20 qubits while D-Wave provides 2,000 qubits. However, when transforming entire gate circuits into QUBOs, additional qubits will be required. The objective of this work is to determine a subset of quantum gates suitable for transformation into single-degree 2-local Ising Hamiltonians under a common qubit base representation such that they comprise a compound circuit suitable for pure quantum computation, i.e., without having to switch between classical and quantum computing for different bases. To this end, this work contributes, for the first time, a fully automated method to translate quantum gate circuits comprised of a subset of common gates expressed as an IBM Qiskit program to single-degree 2-local Ising Hamiltonians, which are subsequently embedded in the D-Wave 2000Q chimera graph. These gate elements are placed in the chimera graph and augmented by constraints that enforce inter-gate logical relationships, resulting in an annealer embedding that completely characterizes the overall gate circuit. Annealer embeddings for several example quantum gate circuits are then evaluated on D-Wave 2000Q hardware.more » « less
-
The study of quantum generative models is well-motivated, not only because of its importance in quantum machine learning and quantum chemistry but also because of the perspective of its implementation on near-term quantum machines. Inspired by previous studies on the adversarial training of classical and quantum generative models, we propose the first design of quantum Wasserstein Generative Adversarial Networks (WGANs), which has been shown to improve the robustness and the scalability of the adversarial training of quantum generative models even on noisy quantum hardware. Specifically, we propose a definition of the Wasserstein semimetric between quantum data, which inherits a few key theoretical merits of its classical counterpart. We also demonstrate how to turn the quantum Wasserstein semimetric into a concrete design of quantum WGANs that can be efficiently implemented on quantum machines. Our numerical study, via classical simulation of quantum systems, shows the more robust and scalable numerical performance of our quantum WGANs over other quantum GAN proposals. As a surprising application, our quantum WGAN has been used to generate a 3-qubit quantum circuit of ~50 gates that well approximates a 3-qubit 1-d Hamiltonian simulation circuit that requires over 10k gates using standard techniques.more » « less
An official website of the United States government

