skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Achieving Efficient Collaboration in Decentralized Heterogeneous Teams using Common-Pool Resource Games
We consider a team of heterogeneous agents that is collectively responsible for servicing and subsequently reviewing a stream of homogeneous tasks. Each agent (autonomous system or human operator) has an associated mean service time and mean review time for servicing and reviewing the tasks, respectively, which are based on their expertise and skill-sets. The team objective is to collaboratively maximize the number of "serviced and reviewed" tasks. To this end, we formulate a Common-Pool Resource (CPR) game and design utility functions to incentivize collaboration among team-members. We show the existence and uniqueness of the Pure Nash Equilibrium (PNE) for the CPR game. Additionally, we characterize the structure of the PNE and study the effect of heterogeneity among the agents at the PNE. We show that the formulated CPR game is a best response potential game for which both sequential best response dynamics and simultaneous best reply dynamics converge to the Nash equilibrium. Finally, we numerically illustrate the price of anarchy for the PNE.  more » « less
Award ID(s):
1734272
PAR ID:
10172976
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Conference on Decision and Control
Page Range / eLocation ID:
6924 to 6929
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping. 
    more » « less
  2. Shared/buy-in computing systems offer users the option to select between buy-in and shared services. In such systems, idle buy-in resources are made available to other users for sharing. With strategic users, resource purchase and allocation in such systems can be cast as a non-cooperative game, whose corresponding Nash equilibrium does not necessarily result in the optimal social cost. In this study, we first derive the optimal social cost of the game in closed form, by casting it as a convex optimization problem and establishing related properties. Next, we derive a closed-form expression for the social cost at the Nash equilibrium, and show that it can be computed in linear time. We further show that the strategy profiles of users at the optimum and the Nash equilibrium are directly proportional. We measure the inefficiency of the Nash equilibrium through the price of anarchy, and show that it can be quite large in certain cases, e.g., when the operating expense ratio is low or when the distribution of user workloads is relatively homogeneous. To improve the efficiency of the system, we propose and analyze two subsidy policies, which are shown to converge using best-response dynamics. 
    more » « less
  3. We introduce and study a variant of network cost-sharing games with additional non-shareable costs (NCSG+), which is shown to possess a pure Nash equilibrium (PNE). We extend polynomial-time PNE computation results to a class of graphs that generalizes series-parallel graphs when the non-shareable costs are player-independent. Further, an election game model is presented based on an NCSG+ when voter opinions form natural discrete clusters. This model captures several variants of the classic Hotelling-Downs election model, including ones with limited attraction, ability of candidates to enter, change stance positions and exit any time during the campaign or abstain from the race, the restriction on candidates to access certain stance positions, and the operational costs of running a campaign. Finally, we provide a polynomial-time PNE computation for an election game when stance changes are restricted. 
    more » « less
  4. We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chain by means of semimartingale and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control in the same time, but also extend the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game, as well as how the equilibrium of mean field game consists of an approximative Nash equilibrium for the game with finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less
  5. Consider a general-sum N-player linear-quadratic (LQ) game with stochastic dynamics over a finite time horizon. It is known that under some mild assumptions, the Nash equilibrium (NE) strategies for the players can be obtained by a natural policy gradient algorithm. However, the traditional implementation of the algorithm requires the availability of complete state and action information from all agents and may not scale well with the number of agents. Under the assumption of known problem parameters, we present an algorithm that assumes state and action information from only neighboring agents according to the graph describing the dynamic or cost coupling among the agents. We show that the proposed algorithm converges to an 𝜖-neighborhood of the NE where the value of 𝜖 depends on the size of the local neighborhood of agents. 
    more » « less