skip to main content


This content will become publicly available on December 31, 2024

Title: Social Cost Analysis of Shared/Buy-in Computing Systems
Shared/buy-in computing systems offer users the option to select between buy-in and shared services. In such systems, idle buy-in resources are made available to other users for sharing. With strategic users, resource purchase and allocation in such systems can be cast as a non-cooperative game, whose corresponding Nash equilibrium does not necessarily result in the optimal social cost. In this study, we first derive the optimal social cost of the game in closed form, by casting it as a convex optimization problem and establishing related properties. Next, we derive a closed-form expression for the social cost at the Nash equilibrium, and show that it can be computed in linear time. We further show that the strategy profiles of users at the optimum and the Nash equilibrium are directly proportional. We measure the inefficiency of the Nash equilibrium through the price of anarchy, and show that it can be quite large in certain cases, e.g., when the operating expense ratio is low or when the distribution of user workloads is relatively homogeneous. To improve the efficiency of the system, we propose and analyze two subsidy policies, which are shown to converge using best-response dynamics.  more » « less
Award ID(s):
1908087
NSF-PAR ID:
10496686
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
ACM Transactions on Economics and Computation
Volume:
11
Issue:
3-4
ISSN:
2167-8375
Page Range / eLocation ID:
1 to 36
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electricity markets are cleared by a two-stage, sequential process consisting of a forward (day-ahead) market and a spot (real-time) market. While their design goal is to achieve efficiency, the lack of sufficient competition introduces many opportunities for price manipulation. To discourage this phenomenon, some Independent System Operators (ISOs) mandate generators to submit (approximately) truthful bids in the day-ahead market. However, without fully accounting for all participants' incentives (generators and loads), the application of such a mandate may lead to unintended consequences. In this paper, we model and study the interactions of generators and inelastic loads in a two-stage settlement where generators are required to bid truthfully in the day-ahead market. We show that such mandate, when accounting for generator and load incentives, leads to a {generalized} Stackelberg-Nash game where load decisions (leaders) are performed in day-ahead market and generator decisions (followers) are relegated to the real-time market. Furthermore, the use of conventional supply function bidding for generators in real-time, does not guarantee the existence of a Nash equilibrium. This motivates the use of intercept bidding, as an alternative bidding mechanism for generators in the real-time market. An equilibrium analysis in this setting, leads to a closed-form solution that unveils several insights. Particularly, it shows that, unlike standard two-stage markets, loads are the winners of the competition in the sense that their aggregate payments are less than that of the competitive equilibrium. Moreover, heterogeneity in generators cost has the unintended effect of mitigating loads market power. Numerical studies validate and further illustrate these insights. 
    more » « less
  2. Considered is a network of parallel wireless channels in which individual parties are engaged in secret communication under the protection of cooperative jamming. A strategic eavesdropper selects the most vulnerable channels to attack. Existing works usually suggest the defender allocate limited cooperative jamming power to various channels. However, it usually requires some strong assumptions and complex computation to find such an optimal power control policy. This paper proposes a probabilistic cooperative jamming scheme such that the defender focuses on protecting randomly selected channels. Two different cases regarding each channel’s eavesdropping capacity are discussed. The first case studies the general scenario where each channel has different eavesdropping capacity. The second case analyzes an extreme scenario where all channels have the same eavesdropping capacity. Two non-zero-sum Nash games model the competition between the network defender and an eavesdropper in each case. Furthermore, considering the case that the defender does not know the eavesdropper’s channel state information (CSI) leads to a Bayesian game. For all three games, we derive conditions for the existence of a unique Nash equilibrium (NE), and obtain the equilibria and the value functions in closed form. 
    more » « less
  3. null (Ed.)
    We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chains by means of semimartingales and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control at the same time, but also extends the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game as well as how the equilibrium of a mean field game consists of an approximative Nash equilibrium for the game with a finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less
  4. We develop a probabilistic approach to continuous-time finite state mean field games. Based on an alternative description of continuous-time Markov chain by means of semimartingale and the weak formulation of stochastic optimal control, our approach not only allows us to tackle the mean field of states and the mean field of control in the same time, but also extend the strategy set of players from Markov strategies to closed-loop strategies. We show the existence and uniqueness of Nash equilibrium for the mean field game, as well as how the equilibrium of mean field game consists of an approximative Nash equilibrium for the game with finite number of players under different assumptions of structure and regularity on the cost functions and transition rate between states. 
    more » « less
  5. We formulate a mean field game where each player stops a privately observed Brownian motion with absorption. Players are ranked according to their level of stopping and rewarded as a function of their relative rank. There is a unique mean field equilibrium, and it is shown to be the limit of associated n-player games. Conversely, the mean field strategy induces n-player ε-Nash equilibria for any continuous reward function—but not for discontinuous ones. In a second part, we study the problem of a principal who can choose how to distribute a reward budget over the ranks and aims to maximize the performance of the median player. The optimal reward design (contract) is found in closed form, complementing the merely partial results available in the n-player case. We then analyze the quality of the mean field design when used as a proxy for the optimizer in the n-player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain this with an asymptotic singularity in the induced n-player equilibrium distributions. Funding: M. Nutz is supported by an Alfred P. Sloan Fellowship and the Division of Mathematical Sciences of the National Science Foundation [Grants DMS-1812661 and DMS-2106056]. Y. Zhang is supported in part by the Natural Sciences and Engineering Research Council of Canada [NSERC Discovery Grant RGPIN-2020-06290]. 
    more » « less