skip to main content


Title: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization
Batch Bayesian optimization has been shown to be an efficient and successful approach for black-box function optimization, especially when the evaluation of cost function is highly expensive but can be efficiently parallelized. In this paper, we introduce a novel variational framework for batch query optimization, based on the argument that the query batch should be selected to have both high diversity and good worst case performance. This motivates us to introduce a variational objective that combines a quantile-based risk measure (for worst case performance) and entropy regularization (for enforcing diversity). We derive a gradient-based particle-based algorithm for solving our quantile-based variational objective, which generalizes Stein variational gradient descent (SVGD). We evaluate our method on a number of real-world applications and show that it consistently outperforms other recent state-of-the-art batch Bayesian optimization methods. Extensive experimental results indicate that our method achieves better or comparable performance, compared to the existing methods.  more » « less
Award ID(s):
1846421
NSF-PAR ID:
10172991
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
international conference on machine learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper.

     
    more » « less
  2. We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them without assuming any knowledge about the convexity of the objective. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks 
    more » « less
  3. Finding diverse and representative Pareto solutions from the Pareto front is a key challenge in multi-objective optimization (MOO). In this work, we propose a novel gradient-based algorithm for profiling Pareto front by using Stein variational gradient descent (SVGD). We also provide a counterpart of our method based on Langevin dynamics. Our methods iteratively update a set of points in a parallel fashion to push them towards the Pareto front using multiple gradient descent, while encouraging the diversity between the particles by using the repulsive force mechanism in SVGD, or diffusion noise in Langevin dynamics. Compared with existing gradient-based methods that require predefined preference functions, our method can work efficiently in high dimensional problems, and can obtain more diverse solutions evenly distributed in the Pareto front. Moreover, our methods are theoretically guaranteed to converge to the Pareto front. We demonstrate the effectiveness of our method, especially the SVGD algorithm, through extensive experiments, showing its superiority over existing gradient-based algorithms. 
    more » « less
  4. The theory of integral quadratic constraints (IQCs) allows the certification of exponential convergence of interconnected systems containing nonlinear or uncertain elements. In this work, we adapt the IQC theory to study first-order methods for smooth and strongly-monotone games and show how to design tailored quadratic constraints to get tight upper bounds of convergence rates. Using this framework, we recover the existing bound for the gradient method~(GD), derive sharper bounds for the proximal point method~(PPM) and optimistic gradient method~(OG), and provide for the first time a global convergence rate for the negative momentum method~(NM) with an iteration complexity O(κ1.5), which matches its known lower bound. In addition, for time-varying systems, we prove that the gradient method with optimal step size achieves the fastest provable worst-case convergence rate with quadratic Lyapunov functions. Finally, we further extend our analysis to stochastic games and study the impact of multiplicative noise on different algorithms. We show that it is impossible for an algorithm with one step of memory to achieve acceleration if it only queries the gradient once per batch (in contrast with the stochastic strongly-convex optimization setting, where such acceleration has been demonstrated). However, we exhibit an algorithm which achieves acceleration with two gradient queries per batch. 
    more » « less
  5. Diversification has been shown to be a powerful mechanism for learning robust models in non- convex settings. A notable example is learning mixture models, in which enforcing diversity between the different mixture components allows us to prevent the model collapsing phenomenon and capture more patterns from the observed data. In this work, we present a variational approach for diversity-promoting learning, which leverages the entropy functional as a natural mechanism for enforcing diversity. We develop a simple and efficient functional gradient-based algorithm for optimizing the variational objective function, which provides a significant generalization of Stein variational gradient descent (SVGD). We test our method on various challenging real world problems, including deep embedded clustering and deep anomaly detection. Empirical results show that our method provides an effective mechanism for diversity-promoting learning, achieving substantial improvement over existing methods. 
    more » « less