skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization
Batch Bayesian optimization has been shown to be an efficient and successful approach for black-box function optimization, especially when the evaluation of cost function is highly expensive but can be efficiently parallelized. In this paper, we introduce a novel variational framework for batch query optimization, based on the argument that the query batch should be selected to have both high diversity and good worst case performance. This motivates us to introduce a variational objective that combines a quantile-based risk measure (for worst case performance) and entropy regularization (for enforcing diversity). We derive a gradient-based particle-based algorithm for solving our quantile-based variational objective, which generalizes Stein variational gradient descent (SVGD). We evaluate our method on a number of real-world applications and show that it consistently outperforms other recent state-of-the-art batch Bayesian optimization methods. Extensive experimental results indicate that our method achieves better or comparable performance, compared to the existing methods.  more » « less
Award ID(s):
1846421
PAR ID:
10172991
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
international conference on machine learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diversification has been shown to be a powerful mechanism for learning robust models in non- convex settings. A notable example is learning mixture models, in which enforcing diversity between the different mixture components allows us to prevent the model collapsing phenomenon and capture more patterns from the observed data. In this work, we present a variational approach for diversity-promoting learning, which leverages the entropy functional as a natural mechanism for enforcing diversity. We develop a simple and efficient functional gradient-based algorithm for optimizing the variational objective function, which provides a significant generalization of Stein variational gradient descent (SVGD). We test our method on various challenging real world problems, including deep embedded clustering and deep anomaly detection. Empirical results show that our method provides an effective mechanism for diversity-promoting learning, achieving substantial improvement over existing methods. 
    more » « less
  2. We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them without assuming any knowledge about the convexity of the objective. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks 
    more » « less
  3. High-dimensional Bayesian optimization (BO) tasks such as molecular design often require > 10,000 function evaluations before obtaining meaningful results. While methods like sparse variational Gaussian processes (SVGPs) reduce computational requirements in these settings, the underlying approximations result in suboptimal data acquisitions that slow the progress of optimization. In this paper we modify SVGPs to better align with the goals of BO: targeting informed data acquisition rather than global posterior fidelity. Using the framework of utility-calibrated variational inference, we unify GP approximation and data acquisition into a joint optimization problem, thereby ensuring optimal decisions under a limited computational budget. Our approach can be used with any decision-theoretic acquisition function and is compatible with trust region methods like TuRBO. We derive efficient joint objectives for the expected improvement and knowledge gradient acquisition functions in both the standard and batch BO settings. Our approach outperforms standard SVGPs on high-dimensional benchmark tasks in control and molecular design. 
    more » « less
  4. We study the problem of finding an 𝜀-first-order stationary point (FOSP) of a smooth function, given access only to gradient information. The best-known gradient query complexity for this task, assuming both the gradient and Hessian of the objective function are Lipschitz continuous, is O(𝜀−7/4). In this work, we propose a method with a gradient complexity of O(𝑑1/4𝜀−13/8), where 𝑑 is the problem dimension, leading to an improved complexity when 𝑑 = O(𝜀−1/2). To achieve this result, we design an optimization algorithm that, underneath, involves solving two online learning problems. Specifically, we first reformulate the task of finding a stationary point for a nonconvex problem as minimizing the regret in an online convex optimization problem, where the loss is determined by the gradient of the objective function. Then, we introduce a novel optimistic quasi-Newton method to solve this online learning problem, with the Hessian approximation update itself framed as an online learning problem in the space of matrices. Beyond improving the complexity bound for achieving an 𝜀-FOSP using a gradient oracle, our result provides the first guarantee suggesting that quasi-Newton methods can potentially outperform gradient descent-type methods in nonconvex settings. 
    more » « less
  5. Finding diverse and representative Pareto solutions from the Pareto front is a key challenge in multi-objective optimization (MOO). In this work, we propose a novel gradient-based algorithm for profiling Pareto front by using Stein variational gradient descent (SVGD). We also provide a counterpart of our method based on Langevin dynamics. Our methods iteratively update a set of points in a parallel fashion to push them towards the Pareto front using multiple gradient descent, while encouraging the diversity between the particles by using the repulsive force mechanism in SVGD, or diffusion noise in Langevin dynamics. Compared with existing gradient-based methods that require predefined preference functions, our method can work efficiently in high dimensional problems, and can obtain more diverse solutions evenly distributed in the Pareto front. Moreover, our methods are theoretically guaranteed to converge to the Pareto front. We demonstrate the effectiveness of our method, especially the SVGD algorithm, through extensive experiments, showing its superiority over existing gradient-based algorithms. 
    more » « less