skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy per Operation Optimization for Energy-Harvesting Wearable IoT Devices
Wearable internet of things (IoT) devices can enable a variety of biomedical applications, such as gesture recognition, health monitoring, and human activity tracking. Size and weight constraints limit the battery capacity, which leads to frequent charging requirements and user dissatisfaction. Minimizing the energy consumption not only alleviates this problem, but also paves the way for self-powered devices that operate on harvested energy. This paper considers an energy-optimal gesture recognition application that runs on energy-harvesting devices. We first formulate an optimization problem for maximizing the number of recognized gestures when energy budget and accuracy constraints are given. Next, we derive an analytical energy model from the power consumption measurements using a wearable IoT device prototype. Then, we prove that maximizing the number of recognized gestures is equivalent to minimizing the duration of gesture recognition. Finally, we utilize this result to construct an optimization technique that maximizes the number of gestures recognized under the energy budget constraints while satisfying the recognition accuracy requirements. Our extensive evaluations demonstrate that the proposed analytical model is valid for wearable IoT applications, and the optimization approach increases the number of recognized gestures by up to 2.4× compared to a manual optimization.  more » « less
Award ID(s):
1651624
PAR ID:
10173005
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
3
ISSN:
1424-8220
Page Range / eLocation ID:
764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Small form factor and low-cost wearable devices enable a variety of applications including gesture recognition, health monitoring, and activity tracking. Energy harvesting and optimal energy management are critical for the adoption of these devices, since they are severely constrained by battery capacity. This paper considers optimal gesture recognition using self-powered devices. We propose an approach to maximize the number of gestures that can be recognized under energy budget and accuracy constraints. We construct a computationally efficient optimization algorithm with the help of analytical models derived using the energy consumption breakdown of a wearable device. Our empirical evaluations demonstrate up to 2.4 x increase in the number of recognized gestures compared to a manually optimized solution. 
    more » « less
  2. Advances in integrated sensors and low-power electronics have led to an increase in the use of wearable devices for health and activity monitoring applications. These devices have severe limitations on weight, form-factor, and battery size since they have to be comfortable to wear. Therefore, they must minimize the total platform energy consumption while satisfying functionality (e.g., accuracy) and performance requirements. Optimizing the platform-level energy efficiency requires considering both the sensor and processing subsystems. To this end, this paper presents a sensor-classifier co-optimization technique with human activity recognition as a driver application. The proposed technique dynamically powers down the accelerometer sensors and controls their sampling rate as a function of the user activity. It leads to a 49% reduction in total platform energy consumption with less than 1% decrease in activity recognition accuracy. 
    more » « less
  3. As radar sensors become an integral component of Internet of Things (IoT) systems, the challenge of high power consumption poses a significant barrier, especially for battery-operated devices. This article introduces NeuroRadar, a groundbreaking solution that leverages a radar front-end capable of generating spike sequences, which can be efficiently processed by energy-saving Spiking Neural Networks (SNNs). We explore the innovative design and implementation of NeuroRadar, showcasing its effectiveness in applications like gesture recognition and human tracking. By achieving dramatically lower power consumption compared to traditional radar systems, NeuroRadar represents a new paradigm in energy-efficient IoT sensing. 
    more » « less
  4. Advances in low-power electronics and machine learning techniques lead to many novel wearable IoT devices. These devices have limited battery capacity and computational power. Thus, energy harvesting from ambient sources is a promising solution to power these low-energy wearable devices. They need to manage the harvested energy optimally to achieve energy-neutral operation, which eliminates recharging requirements. Optimal energy management is a challenging task due to the dynamic nature of the harvested energy and the battery energy constraints of the target device. To address this challenge, we present a reinforcement learning-based energy management framework, tinyMAN, for resource-constrained wearable IoT devices. The framework maximizes the utilization of the target device under dynamic energy harvesting patterns and battery constraints. Moreover, tinyMAN does not rely on forecasts of the harvested energy which makes it a prediction-free approach. We deployed tinyMAN on a wearable device prototype using TensorFlow Lite for Micro thanks to its small memory footprint of less than 100 KB. Our evaluations show that tinyMAN achieves less than 2.36 ms and 27.75 μJ while maintaining up to 45% higher utility compared to prior approaches. 
    more » « less
  5. The use of wearable and mobile devices for health and activity monitoring is growing rapidly. These devices need to maximize their accuracy and active time under a tight energy budget imposed by battery and form-factor constraints. This paper considers energy harvesting devices that run on a limited energy budget to recognize user activities over a given period. We propose a technique to co-optimize the accuracy and active time by utilizing multiple design points with different energy-accuracy trade-offs. The proposed technique switches between these design points at runtime to maximize a generalized objective function under tight harvested energy budget constraints. We evaluate our approach experimentally using a custom hardware prototype and 14 user studies. It achieves 46% higher expected accuracy and 66% longer active time compared to the highest performance design point. 
    more » « less