skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Energy-Optimal Gesture Recognition using Self-Powered Wearable Devices
Small form factor and low-cost wearable devices enable a variety of applications including gesture recognition, health monitoring, and activity tracking. Energy harvesting and optimal energy management are critical for the adoption of these devices, since they are severely constrained by battery capacity. This paper considers optimal gesture recognition using self-powered devices. We propose an approach to maximize the number of gestures that can be recognized under energy budget and accuracy constraints. We construct a computationally efficient optimization algorithm with the help of analytical models derived using the energy consumption breakdown of a wearable device. Our empirical evaluations demonstrate up to 2.4 x increase in the number of recognized gestures compared to a manually optimized solution.  more » « less
Award ID(s):
1651624
PAR ID:
10094590
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wearable internet of things (IoT) devices can enable a variety of biomedical applications, such as gesture recognition, health monitoring, and human activity tracking. Size and weight constraints limit the battery capacity, which leads to frequent charging requirements and user dissatisfaction. Minimizing the energy consumption not only alleviates this problem, but also paves the way for self-powered devices that operate on harvested energy. This paper considers an energy-optimal gesture recognition application that runs on energy-harvesting devices. We first formulate an optimization problem for maximizing the number of recognized gestures when energy budget and accuracy constraints are given. Next, we derive an analytical energy model from the power consumption measurements using a wearable IoT device prototype. Then, we prove that maximizing the number of recognized gestures is equivalent to minimizing the duration of gesture recognition. Finally, we utilize this result to construct an optimization technique that maximizes the number of gestures recognized under the energy budget constraints while satisfying the recognition accuracy requirements. Our extensive evaluations demonstrate that the proposed analytical model is valid for wearable IoT applications, and the optimization approach increases the number of recognized gestures by up to 2.4× compared to a manual optimization. 
    more » « less
  2. Rajala, A; Cortez, A; Hofmann, R; Jornet, A; Lotz-Sisitka, H; Markauskaite, L (Ed.)
    Energy is a central, cross-cutting concept in science, but its abstract nature poses challenges for learners. Metaphor has been recognized as a productive resource used by students, teachers, and scientists to understand and communicate about energy. While much research has focused on metaphors about energy expressed in learners’ speech, we know less about the range of ways learners use gesture to evoke metaphors about energy. In particular, the metaphor energy as substance has been found to be useful for conceptualizing various features of energy. Using a microethnographic approach, we demonstrate how students in an introductory algebra- based university physics course use gesture in three different ways to evoke substance-like metaphors that offer valuable affordances for sensemaking about energy: These include (1) container metaphor gestures, (2) stimulus metaphor gestures, and (3) accounting metaphor gestures. Implications for learning and teaching about energy are discussed. 
    more » « less
  3. Abstract Human-robot collaboration (HRC) is a challenging task in modern industry and gesture communication in HRC has attracted much interest. This paper proposes and demonstrates a dynamic gesture recognition system based on Motion History Image (MHI) and Convolutional Neural Networks (CNN). Firstly, ten dynamic gestures are designed for a human worker to communicate with an industrial robot. Secondly, the MHI method is adopted to extract the gesture features from video clips and generate static images of dynamic gestures as inputs to CNN. Finally, a CNN model is constructed for gesture recognition. The experimental results show very promising classification accuracy using this method. 
    more » « less
  4. null (Ed.)
    Gesture recognition has become increasingly important in human-computer interaction and can support different applications such as smart home, VR, and gaming. Traditional approaches usually rely on dedicated sensors that are worn by the user or cameras that require line of sight. In this paper, we present fine-grained finger gesture recognition by using commodity WiFi without requiring user to wear any sensors. Our system takes advantages of the fine-grained Channel State Information available from commodity WiFi devices and the prevalence of WiFi network infrastructures. It senses and identifies subtle movements of finger gestures by examining the unique patterns exhibited in the detailed CSI. We devise environmental noise removal mechanism to mitigate the effect of signal dynamic due to the environment changes. Moreover, we propose to capture the intrinsic gesture behavior to deal with individual diversity and gesture inconsistency. Lastly, we utilize multiple WiFi links and larger bandwidth at 5GHz to achieve finger gesture recognition under multi-user scenario. Our experimental evaluation in different environments demonstrates that our system can achieve over 90% recognition accuracy and is robust to both environment changes and individual diversity. Results also show that our system can provide accurate gesture recognition under different scenarios. 
    more » « less
  5. Wearable technologies for hand gesture classification are becoming increasingly prominent due to the growing need for more natural, human-centered control of complex devices. This need is particularly evident in emerging fields such as virtual reality and bionic prostheses, which require precise control with minimal delay. One method used for hand gesture recognition is force myography (FMG), which utilizes non-invasive pressure sensors to measure radial muscle forces on the skin’s surface of the forearm during hand movements. These sensors, typically force-sensitive resistors (FSRs), require additional circuitry to generate analog output signals, which are then classified using machine learning to derive corresponding control signals for the device. The performance of hand gesture classification can be influenced by the characteristics of this output signal, which may vary depending on the circuitry used. Our study examined three commonly used circuits in FMG systems: the voltage divider (VD), unity gain amplifier (UGA), and transimpedance amplifier (TIA). We first conducted benchtop testing of FSRs to characterize the impact of this circuitry on linearity, deadband, hysteresis, and drift, all metrics with the potential to influence an FMG system’s performance. To evaluate the circuit’s performance in hand gesture classification, we constructed an FMG band with 8 FSRs, using an adjustable Velcro strap and interchangeable circuitry. Wearing the FMG band, participants (N = 15) were instructed to perform 10 hand gestures commonly used in daily living. Our findings indicated that the UGA circuit outperformed others in minimizing hysteresis, drift and deadband with comparable results to the VD, while the TIA circuit excelled in ensuring linearity. Further, contemporary machine learning algorithms used to detect hand gestures were unaffected by the circuitry employed. These results suggest that applications of FMG requiring precise sensing of force values would likely benefit from use of the UGA. Alternatively, if hand gesture state classification is the only use case, developers can take advantage of benefits offered from using less complex circuitry such as the VD. 
    more » « less