skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monomer design strategies to create natural product-based polymer materials
Covering: 2010–Aug. 2016 In an effort towards enhancing function and sustainability, natural products have become of interest in the field of polymer chemistry. This review details the blending of chemistries developed through synthetic organic chemistry and polymer chemistry. Through synthetic organic chemical transformations, such as functional group interconversion, a protection/deprotection series, or installation of a functional group, various designs towards novel, synthetic, bio-based polymer systems are described. This review covers several classifications of natural products – oils and fatty acids, terpenes, lignin, and sugar derivatives – focusing on exploring monomers prepared by one or more synthetic steps.  more » « less
Award ID(s):
1610311
PAR ID:
10173089
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Natural Product Reports
Volume:
34
Issue:
4
ISSN:
0265-0568
Page Range / eLocation ID:
433 to 459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent progress in the development of photocatalytic reactions promoted by 5 visible light is leading to a renaissance in the use of photochemistry in the construction of 6 structurally elaborate organic molecules. Because of the rich functionality found in natural 7 products, studies in natural product total synthesis provide useful insights into functional 8 group compatibility of these new photocatalytic methods as well as their impact on synthetic 9 strategy. In this review, we examine total syntheses published through the end of 2020 that 10 employ a visible-light photoredox catalytic step. To assist someone interested in employing 11 the photocatalytic steps discussed, the review is organized largely by the nature of the bond 12 formed in the photocatalytic step. 
    more » « less
  2. Abstract Natural products are the great sources of drugs and leading compounds in drug discovery, as it has been estimated that most of the current medicines are derived from natural products. Total synthesis of natural products, especially those of biological activities, has been an important part of organic chemistry, which, besides its potential practical utilities, also provides new inspirations and novel synthetic methodologies. Over the past two decades, organocatalysis has been shown to be very effective in controlling the stereochemistry of the reaction products and has found many applications in the asymmetric synthesis of natural products and related compounds. In this review we will attempt to summarize some applications of asymmetric organocatalysis in the total synthesis of natural products and related compounds in the past seven years. 
    more » « less
  3. null (Ed.)
    Aromatic compounds are one of the most abundant classes of organic molecules and find utility as precursors for alicyclic hydrocarbon building blocks. While many established dearomatization reactions are exceptionally powerful, dearomatization with concurrent introduction of functionality, i.e. dearomative functionalization, is still a largely underdeveloped field. This review aims to provide an overview of our recent efforts and progress in the development of dearomative functionalization of simple and nonactivated arenes using arenophile-arene cycloaddition platform. These cycloadducts, formed via a visible-light-mediated [4+2]-photocycloaddition, can be elaborated in situ through olefin chemistry or transition-metal-catalyzed ring-opening with carbon-, nitrogen-, and oxygen-based nucleophiles, providing access to diverse structures with functional and stereochemical complexity. Moreover, the dearomatized products are amenable to further elaborations, which effectively install other functionalities onto the resulting alicyclic carbocycles. The utility of the arenophile-mediated dearomatization methods are also highlighted by the facile syntheses of natural products and bioactive compounds through novel disconnections. 
    more » « less
  4. This review highlights examples of synthetic organic chemistry used in the context of studying terpene-derived oxidation products in the atmosphere, with a focus on species produced from biogenic isoprene, pinene and caryophyllene. 
    more » « less
  5. null (Ed.)
    This paper is review with 119 references. Approaches to supplant currently used plastics with materials made from more sustainably-sourced monomers is one of the great contemporary challenges in sustainable chemistry. Fatty acids are attractive candidates as polymer precursors because they can be affordably produced on all inhabited continents, and they are also abundant as underutilized by-products of other industries. In surveying the array of synthetic approaches to convert fatty acids into polymers, those routes that produce organosulfur polymers stand out as being especially attractive from a sustainability standpoint. The first well-explored synthetic approach to fatty acid-derived organosulfur polymers employs the thiol-ene click reaction or the closely-related thiol-yne variation. This approach is high-yielding under mild conditions with up to 100% atom economy and high functional group tolerance. More recently, inverse vulcanization has been employed to access high sulfur-content polymers by the reaction of fatty acid-derived olefins with elemental sulfur. This approach is attractive not only because it is theoretically 100% atom economical but also because elemental sulfur is itself an underutilized by-product of fossil fuel refining. The thiol-ene, inverse vulcanization, and mechanistically-related thiol-yne and classic vulcanization are therefore discussed as promising routes to access polymers and composites from fatty acid-derived precursors. 
    more » « less