skip to main content


Title: Sulfur-Containing Polymers Prepared from Fatty Acid-Derived Monomers: Application of Atom-Economical Thiol-ene/Thiol-yne Click Reactions and Inverse Vulcanization Strategies
This paper is review with 119 references. Approaches to supplant currently used plastics with materials made from more sustainably-sourced monomers is one of the great contemporary challenges in sustainable chemistry. Fatty acids are attractive candidates as polymer precursors because they can be affordably produced on all inhabited continents, and they are also abundant as underutilized by-products of other industries. In surveying the array of synthetic approaches to convert fatty acids into polymers, those routes that produce organosulfur polymers stand out as being especially attractive from a sustainability standpoint. The first well-explored synthetic approach to fatty acid-derived organosulfur polymers employs the thiol-ene click reaction or the closely-related thiol-yne variation. This approach is high-yielding under mild conditions with up to 100% atom economy and high functional group tolerance. More recently, inverse vulcanization has been employed to access high sulfur-content polymers by the reaction of fatty acid-derived olefins with elemental sulfur. This approach is attractive not only because it is theoretically 100% atom economical but also because elemental sulfur is itself an underutilized by-product of fossil fuel refining. The thiol-ene, inverse vulcanization, and mechanistically-related thiol-yne and classic vulcanization are therefore discussed as promising routes to access polymers and composites from fatty acid-derived precursors.  more » « less
Award ID(s):
1708844
NSF-PAR ID:
10199255
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sustainable Chemistry
Volume:
1
Issue:
3
ISSN:
2673-4079
Page Range / eLocation ID:
209 to 237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The search for alternative feedstocks to replace petrochemical polymers has centered on plant-derived monomer feedstocks. Alternatives to agricultural feedstock production should also be pursued, especially considering the ecological damage caused by modern agricultural practices. Herein, l -tyrosine produced on an industrial scale by E. coli was derivatized with olefins to give tetraallyltyrosine. Tetraallyltyrosine was subsequently copolymerized via its inverse vulcanization with industrial by-product elemental sulfur in two different comonomer ratios to afford highly-crosslinked network copolymers TTSx ( x = wt% sulfur in monomer feed). TTSx copolymers were characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis (DMA). DMA was employed to assess the viscoelastic properties of TTSx through the temperature dependence of the storage modulus, loss modulus and energy damping ability. Stress–strain analysis revealed that the flexural strength of TTSx copolymers (>6.8 MPa) is more than 3 MPa higher than flexural strengths for previously-tested inverse vulcanized biopolymer derivatives, and more than twice the flexural strength of some Portland cement compositions (which range from 3–5 MPa). Despite the high tyrosine content (50–70 wt%) in TTSx , the materials show no water-induced swelling or water uptake after being submerged for 24 h. More impressively, TTSx copolymers are highly resistant to oxidizing acid, with no deterioration of mechanical properties even after soaking in 0.5 M sulfuric acid for 24 h. The demonstration that these durable, chemically-resistant TTSx copolymers can be prepared from industrial by-product and microbially-produced monomers via a 100% atom-economical inverse vulcanization process portends their potential utility as sustainable surrogates for less ecofriendly materials. 
    more » « less
  2. Abstract

    Organosulfur polymers prepared via the inverse vulcanization of elemental sulfur with olefinic comonomers represent a new class of high‐chalcogenide content organic/inorganic macromolecules. Extensive reporting on new synthetic advances and materials derived from the inverse vulcanization process have been explored in the past decade. However, detailed structural analysis of these sulfur copolymers have not been rigorously conducted, due to the poor solubility of many of these materials, coupled with the numerous side‐reactions that result in complex microstructures from these synthetic methods. In the current report, we revisit analysis of the solution13C NMR spectral data for poly(S‐r‐Sty) and identify for the first time previously unidentified carbon peaks that offer new insights into a corrected repeating unit structure of this sulfur copolymer.

     
    more » « less
  3. Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint. A range of terpenoid–sulfur cements have shown compressional and flexural properties exceeding those of some commercial structural mineral cements. Pozzolans such as fly ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) and abundant clay resources such as metakaolin (MK) are attractive fines for addition to binders. Herein, we report 10 composites prepared by a combination of sulfur, terpenoids (geraniol or citronellol), and these pozzolans. This study reveals the extent to which the addition of the pozzolan fines to the sulfur–terpenoid cements influences their mechanical properties and chemical resistance. The sulfur–terpenoid composites CitS and GerS were prepared by the reaction of 90 wt% sulfur and 10 wt% citronellol or geraniol oil, respectively. The density of the composites fell within the range of 1800–1900 kg/m3 and after 24 h submersion in water at room temperature, none of the materials absorbed more than 0.7 wt% water. The compressional strength of the as-prepared materials ranged from 9.1–23.2 MPa, and the percentage of compressional strength retained after acid challenge (submersion in 0.1 M H2SO4 for 24 h) ranged from 80–100%. Incorporating pozzolan fines into the already strong CitS (18.8 MPa) had negligible effects on its compressional strength within the statistical error of the measurement. CitS-SF and CitS-MK had slightly higher compressive strengths of 20.4 MPa and 23.2 MPa, respectively. CitS-GGBFS and CitS-FA resulted in slightly lower compressive strengths of 17.0 MPa and 15.8 MPa, respectively. In contrast, the compressional strength of initially softer GerS (11.7 MPa) benefited greatly after incorporating hard mineral fines. All GerS derivatives had higher compressive strengths than GerS, with GerS-MK having the highest compressive strength of 19.8 MPa. The compressional strengths of several of the composites compare favorably to those required by traditional mineral cements for residential building foundations (17 MPa), whereas such mineral products disintegrate upon similar acid challenge. 
    more » « less
  4. null (Ed.)
    The acid-catalyzed thiol–ene reaction (ACT) is a unique thiol–X conjugation strategy that produces S,X-acetal conjugates. Unlike the well-known radical-mediated thiol–ene and anion-mediated thiol-Michael reactions that produce static thioether bonds, acetals provide unique function for various fields such as drug delivery and protecting group chemistries; however, this reaction is relatively underutilized for creating new and unique materials owing to the unexplored reactivity over a broad set of substrates and potential side reactions. Solution-phase studies using a range of thiol and alkene substrates were conducted to evaluate the ACT reaction as a conjugation strategy. Substrates that efficiently undergo cationic polymerizations, such as those containing vinyl functional groups, were found to be highly reactive to thiols in the presence of catalytic amounts of acid. Additionally, sequential initiation of three separate thiol–X reactions (thiol-Michael, ACT, and thiol–ene) was achieved in a one-pot scheme simply by the addition of the appropriate catalyst demonstrating substrate selectivity. Furthermore, photoinitiation of the ACT reaction was achieved for the first time under 470 nm blue light using a novel photochromic photoacid. Finally, using multifunctional monomers, solid-state polymer networks were formed using the ACT reaction producing acetal crosslinks. The presence of S,X-acetal bonds results in an increased glass transition temperature of 20 °C as compared with the same polymeric film polymerized through the radical thiol–ene mechanism. This investigation demonstrates the broad impact of the ACT reaction and expands upon the diverse thiol–X library of conjugation strategies towards the development of novel materials systems. 
    more » « less
  5. Abstract

    A three‐stage route to chemically upcycle post‐consumer poly(ethylene terephthalate) (PET) to produce high compressive strength composites is reported. This procedure involves initial glycolysis with diethylene glycol to produce a mixture (GPET) comprising oligomers of 2–7 terephthalate units followed by trans/esterification of GPET with fatty acid chains supplied by brown grease, an agricultural by‐product of animal fat of relatively low nutritional or fuel value. This process yields PGB comprising a mixture of mono‐terephthalate ester derivatives. The olefin units provided by unsaturated fatty acid chains in brown grease were crosslinked by an inverse vulcanization reaction with elemental sulfur to give composites GBSx(x = wt% S, varied from 80%–90%). The compressive strengths of GBS80(27.5 ± 2.6 MPa) and GBS90(19.2 ± 0.8 MPa) exceed the compressive strength required of ordinary Portland cement (17 MPa) for its use in residential building foundations. The current route represents a way to repurpose waste plastic, energy sector by‐product sulfur, and agricultural by‐product brown grease to give high strength composites with mechanical properties suggesting their possible use to replace less sustainably sourced legacy structural materials.

     
    more » « less