skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional sugar-based polymers and nanostructures comprised of degradable poly( d -glucose carbonate)s
Fundamental synthetic methodology was advanced to allow for the preparation of a reactive glucose-based block copolycarbonate, which was conveniently transformed into a series of amphiphilic block copolymers that underwent aqueous assembly into functional nanoparticle morphologies having practical utility in biomedical and other applications. Two degradable d -glucose carbonate monomers, with one carrying alkyne functionality, were designed and synthesized to access well-defined block polycarbonates ( Đ < 1.1) via sequential organocatalytic ring opening polymerizations (ROPs). Kinetic studies of the organocatalyzed sequential ROPs showed a linear relationship between the monomer conversion and the polymer molecular weight, which indicated the controlled fashion during each polymerization. The pendant alkyne groups underwent two classic click reactions, copper-catalyzed azide–alkyne dipolar cycloaddition (CuAAC) and thiol–yne addition reactions, which were employed to render hydrophilicity for the alkyne-containing block and to provide a variety of amphiphilic diblock poly( d -glucose carbonate)s (PGCs). The resulting amphiphilic PGCs were further assembled into a family of nanostructures with different sizes, morphologies, surface charges and functionalities. These non-ionic and anionic nanoparticles showed low cytotoxicity in RAW 264.7 mouse macrophage cells and MC3T3 healthy mouse osteoblast precursor cells, while the cationic nanoparticles exhibited significantly higher IC 50 (162 μg mL −1 in RAW 264.7; 199 μg mL −1 in MC3T3) compared to the commercially available cationic lipid-based formulation, Lipofectamine (IC 50 = 31 μg mL −1 ), making these nanomaterials of interest for biomedical applications.  more » « less
Award ID(s):
1410272 1610311
PAR ID:
10173090
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
8
Issue:
10
ISSN:
1759-9954
Page Range / eLocation ID:
1699 to 1707
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Zinc oxide nanoparticles (ZnO NPs) are versatile and promising, with diverse applications in environmental remediation, nanomedicine, cancer treatment, and drug delivery. In this study, ZnO NPs were synthesized utilizing extracts derived fromAcacia catechu, Artemisia vulgaris, andCynodon dactylon. The synthesized ZnO NPs showed an Ultraviolet–visible spectrum at 370 nm, and X-ray diffraction analysis indicated the hexagonal wurtzite framework with the average crystallite size of 15.07 nm, 16.98 nm, and 18.97 nm for nanoparticles synthesized utilizingA. catechu, A. vulgaris,andC. dactylonrespectively. Scanning electron microscopy (SEM) demonstrated spherical surface morphology with average diameters of 18.5 nm, 17.82 nm, and 17.83 nm for ZnO NPs prepared fromA. catechu, A. vulgaris, andC. dactylon,respectively. Furthermore, ZnO NPs tested againstStaphylococcus aureus, Kocuria rhizophila, Klebsiella pneumonia,andShigella sonneidemonstrated a zone of inhibition of 8 to 14 mm. The cell viability and cytotoxicity effects of ZnO NPs were studied on NIH-3T3 mouse fibroblast cells treated with different concentrations (5 μg/mL, 10 μg/mL, and 50 μg/mL). The results showed biocompatibility of all samples, except with higher doses causing cell death. In conclusion, the ZnO NPs synthesized through plant-mediated technique showed promise for potential utilization in various biomedical applications in the future. 
    more » « less
  2. ABSTRACT Carbohydrates are the fundamental building blocks of many natural polymers, their wide bioavailability, high chemical functionality, and stereochemical diversity make them attractive starting materials for the development of new synthetic polymers. In this work, one such carbohydrate,d‐glucopyranoside, was utilized to produce a hydrophobic five‐membered cyclic carbonate monomer to afford sugar‐based amphiphilic copolymers and block copolymers via organocatalyzed ring‐opening polymerizations with 4‐methylbenzyl alcohol and methoxy poly(ethylene glycol) as initiator and macroinitiator, respectively. To modulate the amphiphilicities of these polymers acidic benzylidene cleavage reactions were performed to deprotect the sugar repeat units and present hydrophilic hydroxyl side chain groups. Assembly of the polymers under aqueous conditions revealed interesting morphological differences, based on the polymer molar mass and repeat unit composition. The initial polymers, prior to the removal of the benzylidenes, underwent a morphological change from micelles to vesicles as the sugar block length was increased, causing a decrease in the hydrophilic–hydrophobic ratio. Deprotection of the sugar block increased the hydrophilicity and gave micellar morphologies. This tunable polymeric platform holds promise for the production of advanced materials for implementation in a diverse range of applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 432–440 
    more » « less
  3. In this work, we designed and fabricated a nanoscopic sugar-based magnetic hybrid material that is capable of tackling environmental pollution posed by marine oil spills, while minimizing potential secondary problems that may occur from microplastic contamination. These readily-defined magnetic nanocomposites were constructed through co-assembly of magnetic iron oxide nanoparticles (MIONs) and a degradable amphiphilic polymer, poly(ethylene glycol)- b -dopamine-functionalized poly(ethyl propargyl glucose carbonate)- b -poly(ethyl glucose carbonate), PEG- b -PGC[(EPC-MPA)- co -(EPC-DOPA)]- b -PGC(EC), driven by supramolecular co-assembly in water with enhanced interactions provided via complexation between dopamine and MIONs. The composite nanoscopic assemblies possessed a pseudo -micellar structure, with MIONs trapped within the polymer framework. The triblock terpolymer was synthesized by sequential ring-opening polymerizations (ROPs) of two glucose-derived carbonate monomers, initiated by a PEG macroinitiator. Dopamine anchoring groups were subsequently installed by first introducing carboxylic acid groups using a thiol–yne click reaction, followed by amidation with dopamine. The resulting amphiphilic triblock terpolymers and MIONs were co-assembled to afford hybrid nanocomposites using solvent exchange processes from organic solvent to water. In combination with hydrophobic interactions, the linkage between dopamine and iron oxide stabilized the overall nanoscopic structure to allow for the establishment of a uniform globular morphology, whereas attempts at co-assembly with the triblock terpolymer precursor, lacking dopamine side chains, failed to afford well-defined nanostructures. The magnetic hybrid nanoparticles demonstrated high oil sorption capacities, ca. 8 times their initial dry weight, attributed, in part, to large surface areas leading to effective contact between the nanomaterials and hydrocarbon pollutants. Moreover, the naturally-derived polymer framework undergoes hydrolytic degradation to break down into byproducts that include glucose, ethanol and dopamine if not recovered after deployment, alleviating concerns of potential microplastic generation and persistence. 
    more » « less
  4. The development of next-generation smart nanocarriers that can be tailored for specific applications requires precise control over physiochemical properties, yet modulation of nanostructures solely through synthetic routes is a time-consuming and labor-intensive process. In this work, co-assembly of two degradable glucose-based amphiphilic block polymers is demonstrated as a means to control nanoparticle size, surface charge, and stimuli-responsive properties, allowing optimization of these constructs for cytosolic drug delivery applications. Polymeric particles with varying weight fractions of carboxylate- and histamine-modified poly( dl- lactide)- b -poly( d -glucose carbonate)s (PDLLA- b -PDGC) were obtained with diameters ranging from ca. 30 nm to 3 μm and zeta potential values ranging from ca. −35 mV to −1.6 mV in nanopure water. Histamine moieties imparted pH-responsive behavior due to protonation below pH 7, whereas the carboxylates imparted colloidal stability and anionic character. Blending the acid- and histamine-functionalized polymers produced co-assemblies with different pH-dependent surface charge profiles. In particular, co-assemblies with 60 wt% histamine-modified PDLLA- b -PDGC ( f histamine = 0.6) swelled upon acidification from physiological pH (7.4) to endolysosomal pH (5.5), which is anticipated to enable drug release within endolysosomal compartments. The accessible procedures presented here for engineering highly tunable nanoparticles from glucose-based, functional, degradable polymers offer versatile strategies for accelerating the development and clinical implementation of such stimuli-responsive, tailored nanocarriers. 
    more » « less
  5. We report the first example of a self-immolative polymer that exerts potent antibacterial activity combined with relatively low hemolytic toxicity. In particular, self-immolative poly(benzyl ether)s bearing pendant cationic ammonium groups and grafted poly(ethylene glycol) chains in their side chains were prepared via post-polymerization thiol–ene chemistry. These functional polymers undergo sensitive and specific triggered depolymerization into small molecules upon exposure to a designed stimulus (in this example, fluoride ions cleave a silyl ether end cap). The molar composition of the resulting statistical copolymers varied from 0 to 100% PEG side chains. The average molar mass of the pendant PEG chains was either 800 or 2000 g mol −1 . The antibacterial and hemolytic activities were evaluated as a function of copolymer composition. Strong bactericidal activity (low μg mL −1 MBC) was retained in the copolymers containing 25–50% PEG-800, whereas hemolytic toxicity monotonically decreased (up to HC 50 >1000 μg mL −1 ) with increasing PEG content. PEG-2000 was far less effective; both the MBC and HC 50 decreased to a comparable extent with increasing PEGylation. Overall, the best cell type selectivity index (HC 50 /MBC ∼ 28) was obtained for the copolymer containing ∼50% cysteamine and ∼50% PEG-800 side chains, as compared to the cationic homopolymer (HC 50 /MBC < 1). Thus, the systematic tuning of the PEG graft density and chain length effectively enhances the cell-type selectivity of these self-immolative polymers by orders of magnitude. 
    more » « less