skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acoustic Beam Characterization and Selection for Optimized Underwater Communication
To increase underwater acoustic signal detectability and conserve energy, nodes leverage directional transmissions. In addition, nodes operate in a three-dimensional (3D) environment that is categorized as inhomogeneous where a propagating signal changes its direction based on the observed sound speed profile (SSP). Coupling 3D directional transmission with frequent node drifts and the varying underwater SSP complicates the process of selecting suitable transmission angles to maintain underwater communication links. Fundamentally, utilizing directional transmission while nodes are drifting causes breaks in established communication links and thus nodes need to find new angles to reestablish these links. Moreover, selecting arbitrary transmission angles may lead to overlapping beams or result in leaving an underwater region uncovered. To tackle the abovementioned challenges, this paper proposes an autonomous beam selection approach that optimizes underwater communication by selecting non-overlapping beams while mitigating the possibility of missing a region, i.e., maximize coverage. Such optimization is achieved by utilizing a structured angle selection mechanism that accounts for the capability of the used transducer. Moreover, we introduce an algorithm suited for resource constrained nodes to classify rays into different types. Then we divide the underwater medium into regions where each region is identified by the limits of the coverage area of each ray type. Finally, we utilize the limits of these regions to aid nodes in selecting the best ray to reestablish communication with drifted nodes. We validate our contribution through simulation where actual SSPs are leveraged to validate the beam classification process.  more » « less
Award ID(s):
1917539
PAR ID:
10173123
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Sciences
Volume:
9
Issue:
13
ISSN:
2076-3417
Page Range / eLocation ID:
2740
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of sub-6 GHz and millimeter wave (mmWave) bands has a great potential to enable both reliable coverage and high data rate in future vehicular networks. Nevertheless, during mmWave vehicle-to-infrastructure (V2I) handovers, the coverage blindness of directional beams makes it a significant challenge to discover target mmWave remote radio units (mmW-RRUs) whose active beams may radiate somewhere that handover vehicles are not in. Besides, fast and soft handovers are also urgently needed in vehicular networks. Based on these observations, to solve the target discovery problem, we utilize channel state information (CSI) of sub-6 GHz bands and Kernel-based machine learning (ML) algorithms to predict vehicles’ positions and then use them to pre-activate target mmW-RRUs. Considering that the regular movement of vehicles on almost linearly paved roads with finite corner turns will generate some regularity in handovers, to accelerate handovers, we propose to use historical handover data and K-nearest neighbor (KNN) ML algorithms to predict handover decisions without involving time-consuming target selection and beam training processes. To achieve soft handovers, we propose to employ vehicle-to-vehicle (V2V) connections to forward data for V2I links. Theoretical and simulation results are provided to validate the feasibility of the proposed schemes. 
    more » « less
  2. Millimeter Wave (mmWave) networks can deliver multi-Gbps wireless links that use extremely narrow directional beams. This provides us with a new opportunity to exploit spatial reuse in order to scale network throughput. Exploiting such spatial reuse, however, requires aligning the beams of all nodes in a network. Aligning the beams is a difficult process which is complicated by indoor multipath, which can create interference, as well as by the inefficiency of carrier sense at detecting interference in directional links. This paper presents BounceNet, the first many-to-many millimeter wave beam alignment protocol that can exploit dense spatial reuse to allow many links to operate in parallel in a confined space and scale the wireless throughput with the number of clients. Results from three millimeter wave testbeds show that BounceNet can scale the throughput with the number of clients to deliver a total network data rate of more than 39 Gbps for 10 clients, which is up to 6.6Ă— higher than current 802.11 mmWave standards. 
    more » « less
  3. We consider Byzantine consensus in a synchronous system where nodes are connected by a network modeled as a directed graph, i.e., communication links between neighboring nodes are not necessarily bi-directional. The directed graph model is motivated by wireless networks wherein asymmetric communication links can occur. In the classical point-to-point communication model, a message sent on a communication link is private between the two nodes on the link. This allows a Byzantine faulty node to equivocate, i.e., send inconsistent information to its neighbors. This paper considers the local broadcast model of communication, wherein transmission by a node is received identically by all of its outgoing neighbors, effectively depriving the faulty nodes of the ability to equivocate. Prior work has obtained sufficient and necessary conditions on undirected graphs to be able to achieve Byzantine consensus under the local broadcast model. In this paper, we obtain tight conditions on directed graphs to be able to achieve Byzantine consensus with binary inputs under the local broadcast model. The results obtained in the paper provide insights into the trade-off between directionality of communication links and the ability to achieve consensus. 
    more » « less
  4. Beamforming techniques are considered as essential parts to compensate severe path losses in millimeter-wave (mmWave) communications. In particular, these techniques adopt large antenna arrays and formulate narrow beams to obtain satisfactory received powers. However, performing accurate beam alignment over narrow beams for efficient link configuration by traditional standard defined beam selection approaches, which mainly rely on channel state information and beam sweeping through exhaustive searching, imposes computational and communications overheads. And, such resulting overheads limit their potential use in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications involving highly dynamic scenarios. In comparison, utilizing out-of-band contextual information, such as sensing data obtained from sensor devices, provides a better alternative to reduce overheads. This paper presents a deep learning-based solution for utilizing the multi-modality sensing data for predicting the optimal beams having sufficient mmWave received powers so that the best V2I and V2V line-of-sight links can be ensured proactively. The proposed solution has been tested on real-world measured mmWave sensing and communication data, and the results show that it can achieve up to 98.19% accuracies while predicting top-13 beams. Correspondingly, when compared to existing been sweeping approach, the beam sweeping searching space and time overheads are greatly shortened roughly by 79.67% and 91.89%, respectively which confirm a promising solution for beamforming in mmWave enabled communications. 
    more » « less
  5. In this paper, we investigate covert communication over millimeter-wave (mmWave) frequencies. In particular, a dual-beam mmWave transmitter, comprised of two independent antenna arrays, attempts to reliably communicate to a receiver Bob when hiding the existence of transmission from a warden Willie. In this regard, operating over mmWave bands not only increases the covertness thanks to directional beams, but also increases the transmission data rates given much more available bandwidths and enables ultra-low form factor transceivers due to the lower wavelengths used compared to the conventional radio frequency (RF) counterpart. We assume that the transmitter Alice employs one of its antenna arrays to form a directive beam for transmission to Bob. The other antenna array is used by Alice to generate another beam toward Willie as a jamming signal with its transmit power changing independently from a transmission block to another block. We characterize Willie's detection performance with the optimal detector and the closed-form of its expected value from Alice's perspective. We further derive the closed-form expression for the outage probability of the Alice-Bob link, which enables characterizing the optimal covert rate that can be achieved using the proposed setup. Our results demonstrate the superiority of mmWave covert communication, in terms of covertness and rate, compared to the RF counterpart. 
    more » « less