Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane–Ethylene Separation
- Award ID(s):
- 1708850
- PAR ID:
- 10173142
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 142
- Issue:
- 5
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 2222 to 2227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We report that boron -containing zeolite chabazite (B-CHA) catalyzes the oxidative dehydrogenation of ethane (ODHE) with high selectivity (>70 %) and excellent stability in the temperature range of 500-600 degrees C. ODHE rates, in fact, increase over time on stream. Ethane consumption rate has an apparent activation energy of 126 kJ mol(-1), with Langmuirian dependence on the oxygen partial pressure and first-order dependence on the ethane partial pressure. Investigation of the catalyst before and after reaction by one-dimensional B-11 magic angle spinning (1D B-11 MAS) nuclear magnetic resonance (NMR), two-dimensional B-11 multiple quantum MAS (2D B-11 MQMAS) NMR spectroscopy, and Fourier transform infrared (FTIR) spectroscopy identifies the B-OH group in defect trigonal boron (B(OSi)(OH)(2)) as the species initiating the ODHE reaction. This result could open a pathway to develop suitable catalysts for industrial ethylene production with lower greenhouse gas emissions than current non -oxidative dehydrogenation routes.more » « less
-
null (Ed.)An adaptive learning algorithm coupled with 3D momentum-based feedback is used to identify intense laser pulse shapes that control H 3 + formation from ethane. Specifically, we controlled the ratio of D 2 H + to D 3 + produced from the D 3 C-CH 3 isotopologue of ethane, which selects between trihydrogen cations formed from atoms on one or both sides of ethane. We are able to modify the D 2 H + : D 3 + ratio by a factor of up to three. In addition, two-dimensional scans of linear chirp and third-order dispersion are conducted for a few fourth-order dispersion values while the D 2 H + and D 3 + production rates are monitored. The optimized pulse is observed to influence the yield, kinetic energy release, and angular distribution of the D 2 H + ions while the D 3 + ion dynamics remain relatively stable. We subsequently conducted COLTRIMS experiments on C 2 D 6 to complement the velocity map imaging data obtained during the control experiments and measured the branching ratio of two-body double ionization. Two-body D 3 + + C 2 D 3 + is the dominant final channel containing D 3 + ions, although the three-body D + D 3 + + C 2 D 2 + final state is also observed.more » « less
An official website of the United States government

