Prosthetic devices have significantly improved mobility and quality of life for amputees. Significant engineering advancements have been made in artificial limb biomechanics, joint control systems, and light-weight materials. Amputees report that the primary problem they face with their artificial limbs is a poor fitting socket. In this paper, we propose a smart prosthesis system, in which we measure the real-time force distributions within a prothetic socket and dynamically visualize the results in a mobile application. A major part of the overall proposed system, a wireless pressure sensing system and a force visualization method, are evaluated at current stage. Finally, corresponding works for fully completing this smart prosthesis system are discussed as well.
more »
« less
Wearer-Prosthesis Interaction for Symmetrical Gait: A Study Enabled by Reinforcement Learning Prosthesis Control
- PAR ID:
- 10173146
- Date Published:
- Journal Name:
- IEEE Transactions on Neural Systems and Rehabilitation Engineering
- Volume:
- 28
- Issue:
- 4
- ISSN:
- 1534-4320
- Page Range / eLocation ID:
- 904 to 913
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Measurement of prosthesis structural load, as an important way to quantify the interaction of the amputee user with the environment, may serve important purposes in the control of smart lower-limb prosthetic devices. However, the majority of existing force sensors used in protheses are developed based on strain measurement and thus may suffer from multiple issues such as weak signals and signal drifting. To address these limitations, this paper presents a novel Force-Moment Prosthesis Load Sensor (FM-PLS) to measure the axial force and bending moment in the structure of a lower-limb prosthesis. Unlike strain gauge-based force sensors, the FM-PLS is developed based on the magnetic sensing of small (millimeter-scale) deflection of an elastic element, and it may provide stronger signals that are more robust against interferences and drifting since such physical deflection is several orders of magnitude greater than the strain of a typical load-bearing structure. The design of the sensor incorporates uniquely curved supporting surfaces such that the measurement is sensitive to light load but the sensor structure is robust enough to withstand heavy load without damage. To validate the sensor performance, benchtop testing of the FM-PLS and walking experiments of a FM-PLS-embedded robotic lower-limb prosthesis were conducted. Benchtop testing results displayed good linearity and a good match to the numerical simulation results. Results from the prosthesis walking experiments showed that the sensor signals can be used to detect important gaits events such as heel strike and toe-off, facilitating the reliable motion control of lower-limb prostheses.more » « less
An official website of the United States government

