skip to main content

Search for: All records

Award ID contains: 1563454

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reliable environmental context prediction is critical for wearable robots (e.g., prostheses and exoskeletons) to assist terrain-adaptive locomotion. This article proposed a novel vision-based context prediction framework for lower limb prostheses to simultaneously predict human's environmental context for multiple forecast windows. By leveraging the Bayesian neural networks (BNNs), our framework can quantify the uncertainty caused by different factors (e.g., observation noise, and insufficient or biased training) and produce a calibrated predicted probability for online decision-making. We compared two wearable camera locations (a pair of glasses and a lower limb device), independently and conjointly. We utilized the calibrated predicted probability for online decision-making and fusion. We demonstrated how to interpret deep neural networks with uncertainty measures and how to improve the algorithms based on the uncertainty analysis. The inference time of our framework on a portable embedded system was less than 80 ms/frame. The results in this study may lead to novel context recognition strategies in reliable decision-making, efficient sensor fusion, and improved intelligent system design in various applications.