skip to main content


Search for: All records

Award ID contains: 1815336

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile application security has been a major area of focus for security research over the course of the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance and are hence sound y . Unfortunately, the specific unsound choices or flaws in the design of these tools is often not known or well documented, leading to misplaced confidence among researchers, developers, and users. This article describes the Mutation-Based Soundness Evaluation (μSE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix flaws, by leveraging the well-founded practice of mutation analysis. We implemented μSE and applied it to a set of prominent Android static analysis tools that detect private data leaks in apps. In a study conducted previously, we used μSE to discover 13 previously undocumented flaws in FlowDroid, one of the most prominent data leak detectors for Android apps. Moreover, we discovered that flaws also propagated to other tools that build upon the design or implementation of FlowDroid or its components. This article substantially extends our μSE framework and offers a new in-depth analysis of two more major tools in our 2020 study; we find 12 new, undocumented flaws and demonstrate that all 25 flaws are found in more than one tool, regardless of any inheritance-relation among the tools. Our results motivate the need for systematic discovery and documentation of unsound choices in soundy tools and demonstrate the opportunities in leveraging mutation testing in achieving this goal. 
    more » « less
  2. Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines, and it leads to 11 key findings with serious security implications. We combine several of the vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home platforms on the practicality of security analysis. Our findings draw attention to the unique security challenges of smart home platforms and highlight the importance of enforcing security by design. 
    more » « less
  3. Home automation platforms provide a new level of convenience by enabling consumers to automate various aspects of physical objects in their homes. While the convenience is beneficial, security flaws in the platforms or integrated third-party products can have serious consequences for the integrity of a user's physical environment. In this paper we perform a systematic security evaluation of two popular smart home platforms, Google's Nest platform and Philips Hue, that implement home automation "routines" (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store. Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines. This analysis results in ten key findings with serious security implications. For instance, we demonstrate the potential for the misuse of smart home routines in the Nest platform to perform a lateral privilege escalation, illustrate how Nest's product review system is ineffective at preventing multiple stages of this attack that it examines, and demonstrate how emerging platforms may fail to provide even bare-minimum security by allowing apps to arbitrarily add/remove other apps from the user's smart home. Our findings draw attention to the unique security challenges of platforms that execute routines via centralized data stores, and highlight the importance of enforcing security by design in emerging home automation platforms. 
    more » « less
  4. Mobile application security has been one of the major areas of security research in the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance, and are hence soundy. Unfortunately, the specific unsound choices or flaws in the design of these tools are often not known or well-documented, leading to a misplaced confidence among researchers, developers, and users. This paper proposes the Mutation-based soundness evaluation (µSE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix, flaws, by leveraging the well-founded practice of mutation analysis. We implement µSE as a semi-automated framework, and apply it to a set of prominent Android static analysis tools that detect private data leaks in apps. As the result of an in-depth analysis of one of the major tools, we discover 13 undocumented flaws. More importantly, we discover that all 13 flaws propagate to tools that inherit the flawed tool. We successfully fix one of the flaws in cooperation with the tool developers. Our results motivate the urgent need for systematic discovery and documentation of unsound choices in soundy tools, and demonstrate the opportunities in leveraging mutation testing in achieving this goal. 
    more » « less