skip to main content


Title: Controlled Growth Factor Release in 3D‐Printed Hydrogels
Abstract

Growth factors (GFs) are critical components in governing cell fate during tissue regeneration. Their controlled delivery is challenging due to rapid turnover rates in vivo. Functionalized hydrogels, such as heparin‐based hydrogels, have demonstrated great potential in regulating GF release. While the retention effects of various concentrations and molecular weights of heparin have been investigated, the role of geometry is unknown. In this work, 3D printing is used to fabricate GF‐embedded heparin‐based hydrogels with arbitrarily complex geometry (i.e., teabag, flower shapes). Simplified cylindrical core–shell structures with varied shell thickness are printed, and the rates of GF release are measured over the course of 28 days. Increasing the shell layers' thickness decreases the rate of GF release. Additionally, a mathematical model is developed, which is found capable of accurately predicting GF release kinetics in hydrogels with shell layers greater than 0.5 mm thick (R2> 0.96). Finally, the sequential release is demonstrated by printing two GFs in alternating radial layers. By switching the spatial order, the delivery sequence of the GFs can be modulated. This study demonstrates how 3D printing can be utilized to fabricate user‐defined structures with unique geometry in order to control the rate of GF release in hydrogels.

 
more » « less
Award ID(s):
1644967 1937653
NSF-PAR ID:
10456082
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
9
Issue:
15
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Assembling 2D materials such as MXenes into functional 3D aerogels using 3D printing technologies gains attention due to simplicity of fabrication, customized geometry and physical properties, and improved performance. Also, the establishment of straightforward electrode fabrication methods with the aim to hinder the restack and/or aggregation of electrode materials, which limits the performance of the electrode, is of great significant. In this study, unidirectional freeze casting and inkjet‐based 3D printing are combined to fabricate macroscopic porous aerogels with vertically aligned Ti3C2Txsheets. The fabrication method is developed to easily control the aerogel microstructure and alignment of the MXene sheets. The aerogels show excellent electromechanical performance so that they can withstand almost 50% compression before recovering to the original shape and maintain their electrical conductivities during continuous compression cycles. To enhance the electrochemical performance, an inkjet‐printed MXene current collector layer is added with horizontally aligned MXene sheets. This combines the superior electrical conductivity of the current collector layer with the improved ionic diffusion provided by the porous electrode. The cells fabricated with horizontal MXene sheets alignment as current collector with subsequent vertical MXene sheets alignment layers show the best electrochemical performance with thickness‐independent capacitive behavior.

     
    more » « less
  2. Abstract

    Fabrication of multiscale, multimaterial 3D structures at high resolution is difficult using current technologies. This is especially significant when working with mechanically weak hydrogels. Here, a new hybrid laser printing (HLP) technology is reported to print complex, multiscale, multimaterial, 3D hydrogel structures with microscale resolution. This technique utilizes sequential additive and subtractive modes of fabrication, that are typically considered as mutually exclusive due to differences in their material processing conditions. Further, compared to current laser writing systems that enforce stringent processing depth limits, HLP is shown to fabricate structures at any depth inside the material. As a proof‐of‐principle, a Mayan pyramid with embedded cube frame is printed using synthetic polyethylene glycol diacrylate (PEGDA) hydrogel. Printing of ready‐to‐use open‐well chips with embedded microchannels is also demonstrated using PEGDA and gelatin methacrylate (GelMA) hydrogels for potential applications in biomedical sciences. Next, HLP is used in additive–additive modes to print multiscale 3D structures spanning in size from centimeter to micrometers within minutes, which is followed by printing of 3D, multimaterial, multiscale structures using this technology. Overall, this work demonstrates that HLP's fabrication versatility can potentially offer a unique opportunity for a range of applications in optics and photonics, biomedical sciences, microfluidics, etc.

     
    more » « less
  3. Abstract

    Microscale machines are able to perform a number of tasks like micromanipulation, drug‐delivery, and noninvasive surgery. In particular, microscale polymer machines that can perform intelligent work for manipulation or transport, adaptive locomotion, or sensing are in‐demand. To achieve this goal, shape‐morphing smart polymers like hydrogels, liquid crystalline polymers, and other smart polymers are of great interest. Structures fabricated by these materials undergo mechanical motion under stimulation such as temperature, pH, light, and so on. The use of these materials renders microscale machines that undergo complex stimuli‐responsive transformation such as from planar to 3D by combining spatial design like introducing in‐plane or out‐plane differences. During the past decade, many techniques have been developed or adopted for fabricating structures with smart polymers including microfabrication methods and the well‐known milestone of 4D printing, starting in 2013. In this review, the existing or potential active smart polymers that could be used to fabricate active microscale machines to accomplish complex tasks are summarized.

     
    more » « less
  4. This research investigates the design of structurally performant, lightweight architectural elements produced through concrete 3D printing (C3DP). Traditionally, concrete requires dense and sturdy formwork, whose production adds significantly to the total cost and results in massive and heavy parts after demolding. C3DP offers the unique opportunity to both eliminate the need for formwork and to create lighter parts by introducing internal voids and cavities. The advent of additive manufacturing in a broad range of scales, materials, industries, and applications, led to increased interest and intense research into different types of porous structures, their geometry, and structural performance under various boundary conditions. Precise control over the sparse distribution of material allows not only for parts with similar strength at reduced mass but even for modifications of mechanical properties, like turning brittle materials into elastic or shock-absorbent ones. While with powder-based additive manufacturing processes like metal 3D printing, truss-based lattices have become very popular for the light-weighting of parts or to provide tissue growth scaffolds for medical implants, their geometry – a sparse space frame resulting in numerous individual contour islands and accentuated overhangs – cannot as easily be produced by C3DP, which is based on a continuous material extrusion. Alternative types of micro-structures, so-called triply periodic minimal surfaces (TPMS), are better suited for this process as they are, as their name suggests, consisting of one continuous surface dividing space into two separate but interwoven subspaces. TPMS are therefore very popular for the efficient design of heat exchangers. We develop and present a continuous and integrated workflow, in which the architectural elements and their structural requirements are designed through transitioning back and forth between the force and the form diagram using 3D graphic statics [1]. The members and their topology from the abstract graph of the conceptual form diagram are seamlessly connected to the volumetric modeling (VM) framework, responsible for the definition of the part geometry [2]. VM represents form assigned distance functions (SDF) and can easily handle complex topologies and flawless Boolean operations of not only the outer shell geometry but also the internal micro-structural infill patterns (Fig. 1, a). In an iterative feedback loop, the infill can be further optimized to leave the material only along certain internal stress trajectories (force flows). This functional grading controlling the relative density is done based on the FE analysis results. The stress distribution is thereby defined as a three-dimensional field (Fig. 1, b). Its values can factor into the SDF equation and be used to modify the wavelength (periodicity) of the TPMS, the local thickness of the surface shell, the solid to void fraction by shifting the threshold iso-value or even the alignment and orientation of the unit cells (Fig. 1, c). They can be arranged in an orthogonal, polar- or even spherical coordinate system to optimally adapt to structural necessities. The TPMS pattern can also gradually transition from one type into another type along the gradient of a spatial function. 
    more » « less
  5. Abstract

    Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter‐particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter‐particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene‐modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide‐containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter‐particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post‐processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter‐particle crosslinking to enhance injectable granular hydrogels.

     
    more » « less