skip to main content


Title: Image polaritons in boron nitride for extreme polariton confinement with low losses
Abstract

Polaritons in two-dimensional materials provide extreme light confinement that is difficult to achieve with metal plasmonics. However, such tight confinement inevitably increases optical losses through various damping channels. Here we demonstrate that hyperbolic phonon polaritons in hexagonal boron nitride can overcome this fundamental trade-off. Among two observed polariton modes, featuring a symmetric and antisymmetric charge distribution, the latter exhibits lower optical losses and tighter polariton confinement. Far-field excitation and detection of this high-momenta mode become possible with our resonator design that can boost the coupling efficiency via virtual polariton modes with image charges that we dub ‘image polaritons’. Using these image polaritons, we experimentally observe a record-high effective index of up to 132 and quality factors as high as 501. Further, our phenomenological theory suggests an important role of hyperbolic surface scattering in the damping process of hyperbolic phonon polaritons.

 
more » « less
Award ID(s):
1809723
NSF-PAR ID:
10173280
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal β-Ga2O3(bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

     
    more » « less
  2. Abstract

    We selectively excite and study two new types of phonon-polariton guided modes that are found in hexagonal boron nitride thin flakes on a gold substrate. Such modes show substantially improved confinement and a group velocity that is hundreds of times slower than the speed of light, thereby providing a new way to create slow light in the mid-infrared range with a simple structure that does not require nano-patterning. One mode is the fundamental mode in the first Restrahlen band of hexagonal boron nitride thin crystals on a gold substrate; the other mode is equivalent to the second mode of the second Restrahlen band of hexagonal boron nitride flakes that are suspended in vacuum.

    The new modes also couple efficiently with incident light at the hexagonal boron nitride edges, as we demonstrate experimentally using photo-induced force microscopy and scanning near-field optical microscopy. The high confinement of these modes allows for Purcell factors that are on the order of tens of thousands directly above boron nitride and a wide band, with new perspectives for enhanced light-matter interaction. Our findings demonstrate a new approach to engineering the dispersion of polaritons in 2D materials to improve confinement and light-matter interaction, thereby paving the way for new applications in mid-infrared nano-optics.

     
    more » « less
  3. Abstract

    Exploiting polaritons in natural vdW materials has been successful in achieving extreme light confinement and low-loss optical devices and enabling simplified device integration. Recently, α-MoO3has been reported as a semiconducting biaxial vdW material capable of sustaining naturally orthogonal in-plane phonon polariton modes in IR. In this study, we investigate the polarization-dependent optical characteristics of cavities formed using α-MoO3to extend the degrees of freedom in the design of IR photonic components exploiting the in-plane anisotropy of this material. Polarization-dependent absorption over 80% in a multilayer Fabry-Perot structure with α-MoO3is reported without the need for nanoscale fabrication on the α-MoO3. We observe coupling between the α-MoO3optical phonons and the Fabry-Perot cavity resonances. Using cross-polarized reflectance spectroscopy we show that the strong birefringence results in 15% of the total power converted into the orthogonal polarization with respect to incident wave. These findings can open new avenues in the quest for polarization filters and low-loss, integrated planar IR photonics and in dictating polarization control.

     
    more » « less
  4. Abstract

    Polaritons in hyperbolic van der Waals materials—where principal axes have permittivities of opposite signs—are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.

     
    more » « less
  5. Abstract The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q -factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high- Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications. 
    more » « less