skip to main content

Title: Arctic Sea Ice in Two Configurations of the Community Earth System Model Version 2 (CESM2) During the 20th and 21st Centuries
We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area under the high emissions scenario, a behavior more » that had not been previously seen in CESM simulations. Differences in climate sensitivity and higher levels of atmospheric CO2 by 2100 in the CMIP6 high emissions scenario compared to its CMIP5 analog could explain why this winter ice loss was not previously simulated by the CESM. « less
Authors:
; ; ;
Award ID(s):
1847398 1724748
Publication Date:
NSF-PAR ID:
10173528
Journal Name:
Journal of Geophysical Research: Oceans
ISSN:
2169-9275
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. A new set of stratospheric aerosol geoengineering (SAG) model experiments has been performed with Community Earth System Model version 2 (CESM2) with the Whole Atmosphere Community Climate Model (WACCM6) that are based on the Coupled Model Intercomparison Project phase 6 (CMIP6) overshoot scenario (SSP5-34-OS) as a baseline scenario to limit global warming to 1.5 or 2.0 ∘C above 1850–1900 conditions. The overshoot scenario allows us to applying a peak-shaving scenario that reduces the needed duration and amount of SAG application compared to a high forcing scenario. In addition, a feedback algorithm identifies the needed amount of sulfur dioxide injections in the stratosphere at four pre-defined latitudes, 30∘ N, 15∘ N, 15∘ S, and 30∘ S, to reach three surface temperature targets: global mean temperature, and interhemispheric and pole-to-Equator temperature gradients. These targets further help to reduce side effects, including overcooling in the tropics, warming of high latitudes, and large shifts in precipitation patterns. These experiments are therefore relevant for investigating the impacts on society and ecosystems. Comparisons to SAG simulations based on a high emission pathway baseline scenario (SSP5-85) are also performed to investigate the dependency of impacts using different injection amounts to offset surface warming by SAG. We find that changes from present-day conditions around 2020 in some variables depend strongly on themore »defined temperature target (1.5 ∘C vs. 2.0 ∘C). These include surface air temperature and related impacts, the Atlantic Meridional Overturning Circulation, which impacts ocean net primary productivity, and changes in ice sheet surface mass balance, which impacts sea level rise. Others, including global precipitation changes and the recovery of the Antarctic ozone hole, depend strongly on the amount of SAG application. Furthermore, land net primary productivity as well as ocean acidification depend mostly on the global atmospheric CO2 concentration and therefore the baseline scenario. Multi-model comparisons of experiments that include strong mitigation and carbon dioxide removal with some SAG application are proposed to assess the robustness of impacts on societies and ecosystems.« less
  2. Abstract Winter Arctic sea ice loss has been simulated with varying degrees of abruptness across global climate models (GCMs) run in phase 5 of the Coupled Model Intercomparison Project (CMIP5) under the high-emissions extended RCP8.5 scenario. Previous studies have proposed various mechanisms to explain modeled abrupt winter sea ice loss, such as the existence of a wintertime convective cloud feedback or the role of the freezing point as a natural threshold, but none have sought to explain the variability of the abruptness of winter sea ice loss across GCMs. Here we propose a year-to-year local positive feedback cycle in which warm, open oceans at the start of winter allow for the moistening and warming of the lower atmosphere, which in turn increases the downward clear-sky longwave radiation at the surface and suppresses ocean freezing. This situation leads to delayed and diminished winter sea ice growth and allows for increased shortwave absorption from lowered surface albedo during springtime. Last, the ocean stores this additional heat throughout the summer and autumn seasons, setting up even warmer ocean conditions that lead to further sea ice reduction. We show that the strength of this feedback, as measured by the partial temperature contributions of themore »different surface heat fluxes, correlates strongly with the abruptness of winter sea ice loss across models. Thus, we suggest that this feedback mechanism may explain intermodel spread in the abruptness of winter sea ice loss. In models in which the feedback mechanism is strong, this may indicate the possibility of hysteresis and thus irreversibility of sea ice loss.« less
  3. Abstract

    Improved knowledge of the contributing sources of uncertainty in projections of Arctic sea ice over the 21st century is essential for evaluating impacts of a changing Arctic environment. Here, we consider the role of internal variability, model structure and emissions scenario in projections of Arctic sea-ice area (SIA) by using six single model initial-condition large ensembles and a suite of models participating in Phase 5 of the Coupled Model Intercomparison Project. For projections of September Arctic SIA change, internal variability accounts for as much as 40%–60% of the total uncertainty in the next decade, while emissions scenario dominates uncertainty toward the end of the century. Model structure accounts for 60%–70% of the total uncertainty by mid-century and declines to 30% at the end of the 21st century in the summer months. For projections of wintertime Arctic SIA change, internal variability contributes as much as 50%–60% of the total uncertainty in the next decade and impacts total uncertainty at longer lead times when compared to the summertime. In winter, there exists a considerable scenario dependence of model uncertainty with relatively larger model uncertainty under strong forcing compared to weak forcing. At regional scales, the contribution of internal variability can varymore »widely and strongly depends on the calendar month and region. For wintertime SIA change in the Greenland-Iceland-Norwegian and Barents Seas, internal variability contributes 60%–70% to the total uncertainty over the coming decades and remains important much longer than in other regions. We further find that the relative contribution of internal variability to total uncertainty is state-dependent and increases as sea ice volume declines. These results demonstrate that internal variability is a significant source of uncertainty in projections of Arctic sea ice.

    « less
  4. Abstract

    The rapid decline of Arctic sea ice, including sea ice area (SIA) retreat and sea ice thinning, is a striking manifestation of global climate change. Analysis of 40 CMIP6 models reveals a very large spread in both model simulations of the September SIA and thickness and the timing of a summer ice-free Arctic Ocean. The existing SIA-based evaluation metrics are deficient due to observational uncertainty, prominent internal variability, and indirect Arctic response to global forcing. Given the critical roles of sea ice thickness (SIT) in determining Arctic ice variation throughout the seasonal cycle and the April SIT bridging the winter freezing and summer melting processes, we propose two SIT-based metrics, the April mean SIT and summer SIA response to April SIT, to assess climate models’ capability to reproduce the historical change of the Arctic sea ice area. The selected 11 good models reduce the uncertainty in the projected first ice-free Arctic by 70% relative to 11 poor models. The chosen models’ ensemble mean projects the first ice-free year in 2049 (2043) under the shared socio-economic pathways (SSP)2-4.5 (SSP5-8.5) scenario with one standard deviation of the inter-model spread of 12.0 (8.9) years.

  5. Abstract. The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO42-), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO42- burdens decrease significantly in all simulations by 10 %–60 % following the reductionsmore »of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of -0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which -0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO42- forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change.« less