skip to main content

Search for: All records

Award ID contains: 1847398

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The sensitivity of sea ice to fire emissions highlights climate model uncertainty related to the accuracy of prescribed forcings.
    Free, publicly-accessible full text available July 29, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. Abstract. Seasonal transitions in Arctic sea ice, such as the melt onset, have been found to be useful metrics for evaluating sea ice in climate models against observations. However, comparisons of melt onset dates between climate models and satellite observations are indirect. Satellite data products of melt onset rely on observed brightness temperatures, while climate models do not currently simulate brightness temperatures, and must therefore define melt onset with other modeled variables. Here we adapt a passive microwave sea ice satellite simulator, the Arctic Ocean Observation Operator (ARC3O), to produce simulated brightness temperatures that can be used to diagnose the timing of the earliest snowmelt in climate models, as we show here using Community Earth System Model version 2 (CESM2) ocean-ice hindcasts. By producing simulated brightness temperatures and earliest snowmelt estimation dates using CESM2 and ARC3O, we facilitate new and previously impossible comparisons between the model and satellite observations by removing the uncertainty that arises due to definition differences. Direct comparisons between the model and satellite data allow us to identify an early bias across large areas of the Arctic at the beginning of the CESM2 ocean-ice hindcast melt season, as well as improve our understanding of the physical processes underlyingmore »seasonal changes in brightness temperatures. In particular, the ARC3O allows us to show that satellite algorithm-based melt onset dates likely occur after significant snowmelt has already taken place.« less
  4. Abstract The shrinking of Arctic-wide September sea ice extent is often cited as an indicator of modern climate change; however, the timing of seasonal sea ice retreat/advance and the length of the open-water period are often more relevant to stakeholders working at regional and local scales. Here we highlight changes in regional open-water periods at multiple warming thresholds. We show that, in the latest generation of models from the Coupled Model Intercomparison Project (CMIP6), the open-water period lengthens by 63 days on average with 2 °C of global warming above the 1850-1900 average, and by over 90 days in several Arctic seas. Nearly the entire Arctic, including the Transpolar Sea Route, has at least 3 months of open water per year with 3.5 °C warming, and at least 6 months with 5 °C warming. Model bias compared to satellite data suggests that even such dramatic projections may be conservative.
  5. Abstract The timing of melt onset in the Arctic plays a key role in the evolution of sea ice throughout Spring, Summer and Autumn. A major catalyst of early melt onset is increased downwelling longwave radiation, associated with increased levels of moisture in the atmosphere. Determining the atmospheric moisture pathways that are tied to increased downwelling longwave radiation and melt onset is therefore of keen interest. We employed Self Organizing Maps (SOM) on the daily sea level pressure for the period 1979–2018 over the Arctic during the melt season (April–July) and identified distinct circulation patterns. Melt onset dates were mapped on to these SOM patterns. The dominant moisture transport to much of the Arctic is enabled by a broad low pressure region stretching over Siberia and a high pressure over northern North America and Greenland. This configuration, which is reminiscent of the North American-Eurasian Arctic dipole pattern, funnels moisture from lower latitudes and through the Bering and Chukchi Seas. Other leading patterns are variations of this which transport moisture from North America and the Atlantic to the Central Arctic and Canadian Arctic Archipelago. Our analysis further indicates that most of the early and late melt onset timings in the Arcticmore »are strongly related to the strong and weak emergence of these preferred circulation patterns, respectively.« less
  6. We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area under the high emissions scenario, a behaviormore »that had not been previously seen in CESM simulations. Differences in climate sensitivity and higher levels of atmospheric CO2 by 2100 in the CMIP6 high emissions scenario compared to its CMIP5 analog could explain why this winter ice loss was not previously simulated by the CESM.« less
  7. Abstract. Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, breakup, opening, freeze onset, freeze-up, and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alone, such as sea ice area. We show that models capture the observed asymmetry in seasonal sea ice transitions, with spring ice loss taking about 1–2 months longer than fall ice growth. The largest impacts of internal variability are seen in the inflow regions for melt and freeze onset dates, but all metrics show pan-Arctic model spreads exceeding the internal variability range, indicating the contribution of model differences. Through climate model evaluation in the context of both observations and internal variability, we show that biases in seasonal transition dates can compensate for other unrealistic aspects of simulated sea ice. In some models, this leads to September sea ice areas in agreement with observations for the wrong reasons.
  8. R. L. Thoman, J. Richter-Menge (Ed.)
    https://doi.org/10.25923/bx13-ja71