skip to main content


Title: Majority sensing in synthetic microbial consortia
Abstract

As synthetic biocircuits become more complex, distributing computations within multi-strain microbial consortia becomes increasingly beneficial. However, designing distributed circuits that respond predictably to variation in consortium composition remains a challenge. Here we develop a two-strain gene circuit that senses and responds to which strain is in the majority. This involves a co-repressive system in which each strain produces a signaling molecule that signals the other strain to down-regulate production of its own, orthogonal signaling molecule. This co-repressive consortium links gene expression to ratio of the strains rather than population size. Further, we control the cross-over point for majority via external induction. We elucidate the mechanisms driving these dynamics by developing a mathematical model that captures consortia response as strain fractions and external induction are varied. These results show that simple gene circuits can be used within multicellular synthetic systems to sense and respond to the state of the population.

 
more » « less
Award ID(s):
1936774 1662290 1662305 1936770
NSF-PAR ID:
10173769
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Synthetic microbial consortia are conglomerations of genetically engineered microbes programmed to cooperatively bring about population‐level phenotypes. By coordinating their activity, the constituent strains can display emergent behaviors that are difficult to engineer into isogenic populations. To do so, strains are engineered to communicate with one another through intercellular signaling pathways that depend on cell density.

    Methods

    Here, we used computational modeling to examine how the behavior of synthetic microbial consortia results from the interplay between population dynamics governed by cell growth and internal transcriptional dynamics governed by cell‐cell signaling. Specifically, we examined a synthetic microbial consortium in which two strains each produce signals that down‐regulate transcription in the other. Within a single strain this regulatory topology is called a “co‐repressive toggle switch” and can lead to bistability.

    Results

    We found that in co‐repressive synthetic microbial consortia the existence and stability of different states depend on population‐level dynamics. As the two strains passively compete for space within the colony, their relative fractions fluctuate and thus alter the strengths of intercellular signals. These fluctuations drive the consortium to alternative equilibria. Additionally, if the growth rates of the strains depend on their transcriptional states, an additional feedback loop is created that can generate oscillations.

    Conclusions

    Our findings demonstrate that the dynamics of microbial consortia cannot be predicted from their regulatory topologies alone, but are also determined by interactions between the strains. Therefore, when designing synthetic microbial consortia that use intercellular signaling, one must account for growth variations caused by the production of protein.

     
    more » « less
  2. Abstract Background

    Microbial co-cultures and consortia are of interest in cell-based molecular production and even as “smart” therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication.

    Results

    We created a co-culture for the synthesis of a redox-active phenazine signaling molecule, pyocyanin (PYO), by dividing its synthesis into the generation of its intermediate, phenazine carboxylic acid (PCA) from the first strain, followed by consumption of PCA and generation of PYO in a second strain. Interestingly, both PCA and PYO can be used to actuate gene expression in cells engineered with thesoxRSoxidative stress regulon, although importantly this signaling activity was found to depend on growth media. That is, like other signaling motifs in bacterial systems, the signaling activity is context dependent. We then used this co-culture’s phenazine signals in a tri-culture to modulate gene expression and production of three model products: quorum sensing molecule autoinducer-1 and two fluorescent marker proteins, eGFP and DsRed. We also showed how these redox-based signals could be intermingled with other quorum-sensing (QS) signals which are more commonly used in synthetic biology, to control complex behaviors. To provide control over product synthesis in the tri-cultures, we also showed how a QS-induced growth control module could guide metabolic flux in one population and at the same time guide overall tri-culture function. Specifically, we showed that phenazine signal recognition, enabled through the oxidative stress response regulonsoxRS,was dependent on media composition such that signal propagation within our parsed synthetic system could guide different desired outcomes based on the prevailing environment. In doing so, we expanded the range of signaling molecules available for coordination and the modes by which they can be utilized to influence overall function of a multi-population culture.

    Conclusions

    Our results show that redox-based signaling can be intermingled with other quorum sensing signaling in ways that enable user-defined control of microbial consortia yielding various outcomes defined by culture medium. Further, we demonstrated the utility of our previously designed growth control module in influencing signal propagation and metabolic activity is unimpeded by orthogonal redox-based signaling. By exploring novel multi-modal strategies for guiding communication and consortia outcome, the concepts introduced here may prove to be useful for coordination of multiple populations within complex microbial systems.

     
    more » « less
  3. Summary

    In contrast to the current paradigm of using microbial mono‐cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed‐species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (Synechococcus elongatusPCC 7942) and a heterotrophic bacterium (Pseudomonas putidaEM173). These microbial species specialize in the co‐culture: cyanobacteria fix CO2through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism ofP. putida, which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4‐dinitrotoluene (2,4‐DNT). By encapsulatingS. elongatuswithin a barium–alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4‐DNT, enhancing the performance of the co‐culture. The synthetic consortium was able to convert 2,4‐DNT with light and CO2as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose‐dependent accumulation of polyhydroxyalkanoate, an added‐value biopolymer, in the engineeredP. putidastrain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4‐DNT while simultaneously synthesizing biopolymers using light and CO2as the primary inputs.

     
    more » « less
  4. ABSTRACT

    Key osteoclast (OCL) regulatory gene promoters in bone marrow–derived monocytes harbor bivalent histone modifications that combine activating Histone 3 lysine 4 tri-methyl (H3K4me3) and repressive H3K27me3 marks, which upon RANKL stimulation resolve into repressive or activating architecture. Enhancer of zeste homologue 2 (EZH2) is the histone methyltransferase component of the polycomb repressive complex 2, which catalyzes H3K27me3 modifications. Immunofluorescence microscopy reveals that EZH2 localization during murine osteoclastogenesis is dynamically regulated. Using EZH2 knockdown and small molecule EZH2 inhibitor GSK126, we show that EZH2 plays a critical epigenetic role in OCL precursors (OCLp) during the first 24 hours of RANKL activation. RANKL triggers EZH2 translocation into the nucleus where it represses OCL-negative regulators MafB, Irf8, and Arg1. Consistent with its cytoplasmic localization in OCLp, EZH2 methyltransferase activity is required during early RANKL signaling for phosphorylation of AKT, resulting in downstream activation of the mTOR complex, which is essential for induction of OCL differentiation. Inhibition of RANKL-induced pmTOR-pS6RP signaling by GSK126 altered the translation ratio of the C/EBPβ-LAP and C/EBPβ-LIP isoforms and reduced nuclear translocation of the inhibitory C/EBPβ-LIP, which is necessary for transcriptional repression of the OCL negative-regulatory transcription factor MafB. EZH2 in multinucleated OCL is primarily cytoplasmic and mature OCL cultured on bone segments in the presence of GSK126 exhibit defective cytoskeletal architecture and reduced resorptive activity. Here we present new evidence that EZH2 plays epigenetic and cytoplasmic roles during OCL differentiation by suppressing MafB transcription and regulating early phases of PI3K-AKT–mTOR-mediated RANKL signaling, respectively. Consistent with its cytoplasmic localization, EZH2 is required for cytoskeletal dynamics during resorption by mature OCL. Thus, EZH2 exhibits complex roles in supporting osteoclast differentiation and function. © 2019 American Society for Bone and Mineral Research.

     
    more » « less
  5. You, Lingchong (Ed.)
    The increased complexity of synthetic microbial biocircuits highlights the need for distributed cell functionality due to concomitant increases in metabolic and regulatory burdens imposed on single-strain topologies. Distributed systems, however, introduce additional challenges since consortium composition and spatiotemporal dynamics of constituent strains must be robustly controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-based investigation of emergent spatiotemporal population dynamics using cell-length control in monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control of a strain’s division length, nematic cell alignment in close-packed monolayers can be destabilized. We find that this destabilization confers an emergent, competitive advantage to smaller-length strains—but by mechanisms that differ depending on the spatial patterns of the population. We used complementary modeling approaches to elucidate underlying mechanisms: an agent-based model to simulate detailed mechanical and signaling interactions between the competing strains, and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our research employs novel methods of population control and points the way to programming strain fraction dynamics in consortial synthetic biology. 
    more » « less