skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurately Weighing Neutrinos with Cosmological Surveys
A promising avenue to measure the total, and potentially individual, mass of neutrinos consists of leveraging cosmological datasets, such as the cosmic microwave background and surveys of the large-scale structure of the universe. In order to obtain unbiased estimates of the neutrino mass, however, many effects ought to be included. Here we forecast, via a Markov Chain Monte Carlo likelihood analysis, whether measurements by two galaxy surveys: DESI and {\it Euclid}, when added to the CMB-S4 experiment, are sensitive to two effects that can alter neutrino-mass measurements. The first is the slight difference in the suppression of matter fluctuations that each neutrino-mass hierarchy generates, at fixed total mass. The second is the growth-induced scale-dependent bias (GISDB) of haloes produced by massive neutrinos. We find that near-future surveys can distinguish hierarchies with the same total mass only at the 1𝜎 level; thus, while these are poised to deliver a measurement of the sum of neutrino masses, they cannot significantly discern the mass of each individual neutrino in the foreseeable future. We further find that neglecting the GISDB induces up to a 1𝜎 overestimation of the total neutrino mass, and we show how to absorb this effect via a redshift-dependent parametrization of the scale-independent bias.  more » « less
Award ID(s):
1813694
PAR ID:
10173823
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
1 - 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present simple and predictive realizations of neutrino masses in theories based on the SU(6) grand unifying group. At the level of the lowest-dimension operators, this class of models predicts a skew-symmetric flavor structure for the Dirac mass term of the neutrinos. In the case that neutrinos are Dirac particles, the lowest-order prediction of this construction is then one massless neutrino and two degenerate massive neutrinos. Higher-dimensional operators suppressed by the Planck scale perturb this spectrum, allowing a good fit to the observed neutrino mass matrix. A firm prediction of this construction is an inverted neutrino mass spectrum with the lightest neutrino hierarchically lighter than the other two, so that the sum of neutrino masses lies close to the lower bound for an inverted hierarchy. In the alternate case that neutrinos are Majorana particles, the mass spectrum can be either normal or inverted. However, the lightest neutrino is once again hierarchically lighter than the other two, so that the sum of neutrino masses is predicted to lie close to the corresponding lower bound for the normal or inverted hierarchy. Near future cosmological measurements will be able to test the predictions of this scenario for the sum of neutrino masses. In the case of Majorana neutrinos that exhibit an inverted hierarchy, future neutrinoless double beta experiments can provide a complementary probe. 
    more » « less
  2. A bstract The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way. 
    more » « less
  3. Abstract A novel approach is proposed to reveal a secret birth of enhanced circumstellar material (CSM) surrounding a collapsing massive star using neutrinos as a unique probe. In this scheme, nonthermal TeV-scale neutrinos produced in ejecta–CSM interactions are tied with thermal MeV neutrinos emitted from a pre-explosion burning process, based on a scenario that CSM had been formed via the presupernova activity. Taking a representative model of the presupernova neutrinos, the spectrum and light curve of the corresponding high-energy CSM neutrinos are calculated at multiple mass-loss efficiencies, which are considered as a systematic uncertainty. In addition, as a part of the method demonstration, the detected event rates along time at JUNO and IceCube, as representative detectors, are estimated for the presupernova and CSM neutrinos, respectively, and are compared with the expected background rate at each detector. The presented method is found to be reasonably applicable for the range up to ∌1 kpc and even farther with future experimental efforts. The potentialities of other neutrino detectors, such as SK-Gd, Hyper-Kamiokande, and KM3NeT, are also discussed. This is a pioneering work of performing astrophysics with neutrinos from diverse energy regimes, initiating multienergy neutrino astronomy in the forthcoming era where next-generation large-scale neutrino telescopes are operating. 
    more » « less
  4. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less
  5. Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5–10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino–quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2 , our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. 
    more » « less