Abstract The connection between soil nitrogen availability, leaf nitrogen, and photosynthetic capacity is not perfectly understood. Because these three components tend to be positively related over large spatial scales, some posit that soil nitrogen positively drives leaf nitrogen, which positively drives photosynthetic capacity. Alternatively, others posit that photosynthetic capacity is primarily driven by above-ground conditions. Here, we examined the physiological responses of a non-nitrogen-fixing plant (Gossypium hirsutum) and a nitrogen-fixing plant (Glycine max) in a fully factorial combination of light by soil nitrogen availability to help reconcile these competing hypotheses. Soil nitrogen stimulated leaf nitrogen in both species, but the relative proportion of leaf nitrogen used for photosynthetic processes was reduced under elevated soil nitrogen in all light availability treatments due to greater increases in leaf nitrogen content than chlorophyll and leaf biochemical process rates. Leaf nitrogen content and biochemical process rates in G. hirsutum were more responsive to changes in soil nitrogen than those in G. max, probably due to strong G. max investments in root nodulation under low soil nitrogen. Nonetheless, whole-plant growth was significantly enhanced by increased soil nitrogen in both species. Light availability consistently increased relative leaf nitrogen allocation to leaf photosynthesis and whole-plant growth, a pattern that was similar between species. These results suggest that the leaf nitrogen–photosynthesis relationship varies under different soil nitrogen levels and that these species preferentially allocated more nitrogen to plant growth and non-photosynthetic leaf processes, rather than photosynthesis, as soil nitrogen increased. 
                        more » 
                        « less   
                    
                            
                            Mortierella elongata Increases Plant Biomass among Non-Leguminous Crop Species
                        
                    
    
            Recent studies have shown that M. elongata (M. elongata) isolated from Populus field sites has a dual endophyte–saprotroph lifestyle and is able to promote the growth of Populus. However, little is known about the host fidelity of M. elongata and whether M. elongata strains differ from one another in their ability to promote plant growth. Here, we compared the impacts of three Populus-associated M. elongata isolates (PMI 77, PMI 93, and PMI 624) on the growth of seven different crop species by measuring plant height, plant dry biomass, and leaf area. M. elongata isolates PMI 624 and PMI 93 increased the plant height, leaf area, and plant dry weight of Citrullus lanatus, Zea mays, Solanum lycopersicum, and Cucurbita to a much greater degree than PMI 77 (33.9% to 14.1%). No significant impacts were observed for any isolate on the growth of Abelmoschus esculentus or Glycine max. On the contrary, Glycine max significantly decreased in height by 30.6% after the inoculation of M. elongata PMI 77. In conclusion, this study demonstrates that M. elongata generally promoted metrics of the plant performance among a diverse set of importantly non-leguminous crop species. Future research on understanding the molecular mechanisms that underlie strain and host variability is warranted. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1737898
- PAR ID:
- 10173854
- Date Published:
- Journal Name:
- Agronomy
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2073-4395
- Page Range / eLocation ID:
- 754
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.more » « less
- 
            Sarrocco, Sabrina (Ed.)Harnessing the plant microbiome has the potential to improve agricultural yields and protect plants against pathogens and/or abiotic stresses, while also relieving economic and environmental costs of crop production. While previous studies have gained valuable insights into the underlying genetics facilitating plant-fungal interactions, these have largely been skewed towards certain fungal clades (e.g. arbuscular mycorrhizal fungi). Several different phyla of fungi have been shown to positively impact plant growth rates, including Mortierellaceae fungi. However, the extent of the plant growth promotion (PGP) phenotype(s), their underlying mechanism(s), and the impact of bacterial endosymbionts on fungal-plant interactions remain poorly understood for Mortierellaceae. In this study, we focused on the symbiosis between soil fungus Linnemannia elongata (Mortierellaceae) and Arabidopsis thaliana (Brassicaceae), as both organisms have high-quality reference genomes and transcriptomes available, and their lifestyles and growth requirements are conducive to research conditions. Further, L . elongata can host bacterial endosymbionts related to Mollicutes and Burkholderia . The role of these endobacteria on facilitating fungal-plant associations, including potentially further promoting plant growth, remains completely unexplored. We measured Arabidopsis aerial growth at early and late life stages, seed production, and used mRNA sequencing to characterize differentially expressed plant genes in response to fungal inoculation with and without bacterial endosymbionts. We found that L . elongata improved aerial plant growth, seed mass and altered the plant transcriptome, including the upregulation of genes involved in plant hormones and “response to oxidative stress”, “defense response to bacterium”, and “defense response to fungus”. Furthermore, the expression of genes in certain phytohormone biosynthetic pathways were found to be modified in plants treated with L . elongata . Notably, the presence of Mollicutes- or Burkholderia- related endosymbionts in Linnemannia did not impact the expression of genes in Arabidopsis or overall growth rates. Together, these results indicate that beneficial plant growth promotion and seed mass impacts of L . elongata on Arabidopsis are likely driven by plant hormone and defense transcription responses after plant-fungal contact, and that plant phenotypic and transcriptional responses are independent of whether the fungal symbiont is colonized by Mollicutes or Burkholderia -related endohyphal bacteria.more » « less
- 
            Abstract Over 125 million years of ant-plant interactions have culminated in one of the most intriguing evolutionary outcomes in life history. The myrmecophyteDuroia hirsuta(Rubiaceae) is known for its mutualistic association with the antMyrmelachista schumanniand several other species, mainlyAzteca, in the north-western Amazon. While both ants provide indirect defences to plants, onlyM. schumanninests in plant domatia and has the unique behaviour of clearing the surroundings of its host tree from heterospecific plants, potentially increasing resource availability to its host. Using a 12-year survey, we asked how the continuous presence of either onlyM. schumannior onlyAztecaspp. benefits the growth and defence traits of host trees. We found that the continuous presence ofM. schumanniimproved relative growth rates and leaf shearing resistance ofDuroiabetter than trees withAzteca. However, leaf herbivory, dry matter content, trichome density, and secondary metabolite production were the same in all trees. Survival depended directly on ant association (> 94% of trees died when ants were absent). This study extends our understanding of the long-term effects of strict ant-plant mutualism on host plant traits in the field and reinforces the use ofD. hirsuta–M. schumannias a model system suitable for eco-co-evolutionary research on plant–animal interactions.more » « less
- 
            Abstract Alpine grassland vegetation supports globally important biodiversity and ecosystems that are increasingly threatened by climate warming and other environmental changes. Trait-based approaches can support understanding of vegetation responses to global change drivers and consequences for ecosystem functioning. In six sites along a 1314 m elevational gradient in Puna grasslands in the Peruvian Andes, we collected datasets on vascular plant composition, plant functional traits, biomass, ecosystem fluxes, and climate data over three years. The data were collected in the wet and dry season and from plots with different fire histories. We selected traits associated with plant resource use, growth, and life history strategies (leaf area, leaf dry/wet mass, leaf thickness, specific leaf area, leaf dry matter content, leaf C, N, P content, C and N isotopes). The trait dataset contains 3,665 plant records from 145 taxa, 54,036 trait measurements (increasing the trait data coverage of the regional flora by 420%) covering 14 traits and 121 plant taxa (ca. 40% of which have no previous publicly available trait data) across 33 families.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    