skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The global spectrum of plant form and function: enhanced species-level trait dataset
Abstract Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.  more » « less
Award ID(s):
2017949
NSF-PAR ID:
10455978
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multidimensional trait frameworks are increasingly used to understand plant strategies for growth and survival. However, it is unclear if frameworks developed at a global level can be applied in local communities and how well these frameworks—based largely on plant morphological traits—align with plant physiology and response to stress.

    We tested the ability of an integrated framework of plant form and function to characterise seedling trait variation and drought response among 22 grasses and forbs common in a semi‐arid grassland. We measured above‐ground and below‐ground traits, and survival to explore how drought response is linked to three trait dimensions (resource conservation, microbial collaboration, and plant size) associated with the framework as well as non‐morphological dimensions (e.g. physiological traits) that are under‐represented in global trait frameworks.

    We found support for three globally‐recognised axes representing trade‐offs in strategies associated with tissue investment (leaf nitrogen, leaf mass per area, root tissue density), below‐ground resource uptake (root diameter, specific root length), and size (shoot mass). However, in contrast to global patterns, above‐ground and below‐ground resource conservation gradients were oppositely aligned: root tissue density was positively correlated with leaf N rather than leaf mass per area. This likely reflects different investment strategies of annual and perennial herbaceous species, as fast‐growing annual species invested in lower density roots and less nitrogen‐rich leaves to maximise plant‐level carbon assimilation. Species with longer drought survival minimised water loss through small above‐ground size and low leaf‐level transpiration rates, and drought survival was best predicted by a principal component axis representing plant size.

    Contrary to our expectations, drought survival in seedlings did not align with the conservation or collaboration axes suggesting that seedlings with different functional strategies can achieve similar drought survival, as long as they minimise water loss. Our results also show that within local communities, expected trait relationships could be decoupled as some plant groups achieve similar performance through different trait combinations. The effectiveness of species mean trait values in predicting drought response highlights the value of trait‐based methods as a versatile tool for understanding ecological processes locally across various ecosystems.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes. 
    more » « less
  3. Abstract

    Wisconsin's plant communities are responding to shifting disturbance regimes, habitat fragmentation, aerial nitrogen deposition, exotic species invasions, ungulate herbivory, and successional processes. To better understand how plant functional traits mediate species' responses to changing environmental conditions, we collected a large set of functional trait data for vascular plant species occupying Wisconsin forests and grasslands. We used standard protocols to make 76,213 measurements of 34 quantitative traits. These data provide rich information on genome size, physical leaf traits (length, width, circularity, thickness, dry matter content, specific leaf area, etc.), chemical leaf traits (carbon, nitrogen, phosphorus, potassium, calcium, magnesium, ash), life history traits (vegetative and flower heights, seed mass), and traits affecting plant palatability (leaf fiber, fat, and lignin). These trait values derive from replicate measurements on 12+ individuals of each species from multiple sites and 45+ individuals for a selected subset of species. Measurements typically reflect values for individuals although some chemical traits involved composite samples from several individuals at the same site. We also qualitatively characterized each species by plant family, woodiness, functional group, and Raunkiaer lifeform. These data allow us to characterize trait dimensionality, differentiation, and covariation among temperate plant species (e.g., leaf and stem economic syndromes). We can also characterize species' responses to environmental gradients and drivers of ecological change. With survey and resurvey data available from >400 sites in Wisconsin, we can analyze variation in community trait distributions and diversity over time and space. These data therefore allow us to assess how trait divergence vs. convergence affects community assembly and how traits may be related to half‐century shifts in the distribution and abundance of these species. The data set can be used for non‐commercial purposes. The data set is licensed as follows: CC‐By Attribution 4.0 International. We request users cite both the OSF data set and this Ecology data paper publication.

     
    more » « less
  4. Plant traits are useful for predicting how species may respond to environmental change and/or influence ecosystem properties. Understanding the extent to which traits vary within species and across climatic gradients is particularly important for understanding how species may respond to climate change. We explored whether climate drives spatial patterns of intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined distribution across six continents. We tested the hypothesis that the sensitivity (i.e. slope) of intraspecific trait responses to climate across space would be related to the species' typical form and function (e.g. leaf economics, stature and lifespan). We observed both positive and negative intraspecific trait responses to climate with the distribution of slope coefficients across species straddling zero for precipitation, temperature and climate seasonality. As hypothesized, variation in slope coefficients across species was partially explained by leaf economics and lifespan. For example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions with high precipitation seasonality (PS). Thus, while the influence of climate on trait expression may at first appear idiosyncratic, variation in trait–climate slope coefficients is at least partially explained by the species' typical form and function. Overall, our results suggest that a species' mean location along one axis of trait variation (e.g. leaf economics) could influence how traits along a separate axis of variation (e.g. plant size) respond to spatial variation in climate. 
    more » « less
  5. Abstract

    Pinus edulis Engelm. is a short-stature, drought-tolerant tree species that is abundant in piñon-juniper woodlands throughout semiarid ecosystems of the American Southwest. P. edulis is a model species among ecophysiological disciplines, with considerable research focus given to hydraulic functioning and carbon partitioning relating to mechanisms of tree mortality. Many ecological studies require robust estimates of tree structural traits such as biomass, active sapwood area, and leaf area. We harvested twenty trees from Central New Mexico ranging in size from 1.3 to 22.7 cm root crown diameter (RCD) to derive allometric relationships from measurements of RCD, maximum height, canopy area (CA), aboveground biomass (AGB), sapwood area (AS), and leaf area (AL). Total foliar mass was measured from a subset of individuals and scaled to AL from estimates of leaf mass per area. We report a strong nonlinear relationship to AGB as a function of both RCD and height, whereas CA scaled linearly. Total AS expressed a power relationship with RCD. Both AS and CA exhibited strong linear relationships with AL (R2 = 0.99), whereas RCD increased nonlinearly with AL. We improve on current models by expanding the size range of sampled trees and supplement the existing literature for this species.

    Study Implications: Land managers need to better understand carbon and water dynamics in changing ecosystems to understand how those ecosystems can be sustainably used now and in the future. This study of two-needle pinon (Pinus edulis Engelm.) trees in New Mexico, USA, uses observations from unoccupied aerial vehicles, field measurements, and harvesting followed by laboratory analysis to develop allometric models for this widespread species. These models can be used to understand plant traits such biomass partitioning and sap flow, which in turn will help scientists and land managers better understand the ecosystem services provided by pinon pine across North America.

     
    more » « less